Sfoglia il codice sorgente

feedback from nick and lukas

master
gtheler 6 anni fa
parent
commit
1767705882
31 ha cambiato i file con 1258 aggiunte e 533 eliminazioni
  1. BIN
      B.pdf
  2. +268
    -188
      B.svg
  3. BIN
      M.pdf
  4. +209
    -247
      M.svg
  5. BIN
      acumulada.pdf
  6. +38
    -0
      acumulada.ppl
  7. +452
    -0
      acumulada.svg
  8. BIN
      axi-inches-3d.fcstd
  9. BIN
      axi-inches-3d.fcstd1
  10. BIN
      axi-inches-3d.png
  11. BIN
      case-mode1.webm
  12. BIN
      case-mode2.webm
  13. BIN
      case-mode3.webm
  14. BIN
      case-mode4.webm
  15. BIN
      case-mode5.webm
  16. BIN
      case-mode6.webm
  17. BIN
      case-mode7.webm
  18. BIN
      case-mode8.webm
  19. BIN
      case-mode9.webm
  20. +172
    -0
      comments-lukasz.md
  21. BIN
      hamaca.mp4
  22. BIN
      hamaca.webm
  23. BIN
      mode1.webm
  24. BIN
      mode2.webm
  25. BIN
      mode3.webm
  26. BIN
      mode4.webm
  27. BIN
      mode5.webm
  28. BIN
      mode6.webm
  29. +20
    -0
      modes.dat
  30. +2
    -2
      nafems4-full.md
  31. +97
    -96
      nafems4.md

BIN
B.pdf Vedi File


+ 268
- 188
B.svg Vedi File

@@ -1,5 +1,5 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="436.77pt" height="284.08pt" viewBox="0 0 436.77 284.08" version="1.1">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="295.04pt" height="227.94pt" viewBox="0 0 295.04 227.94" version="1.1">
<defs>
<g>
<symbol overflow="visible" id="glyph0-0">
@@ -80,6 +80,48 @@
<symbol overflow="visible" id="glyph0-25">
<path style="stroke:none;" d="M 1.59375 -7.5 L 0.21875 -7.5 L 0.21875 -7.09375 L 1.1875 -7.09375 L 1.1875 2.09375 L 0.21875 2.09375 L 0.21875 2.5 L 1.59375 2.5 Z M 1.59375 -7.5 "/>
</symbol>
<symbol overflow="visible" id="glyph0-26">
<path style="stroke:none;" d="M 2.25 -6.046875 C 2.25 -6.40625 2.28125 -6.515625 3.0625 -6.515625 L 3.328125 -6.515625 L 3.328125 -6.828125 C 2.984375 -6.796875 2.1875 -6.796875 1.8125 -6.796875 C 1.421875 -6.796875 0.625 -6.796875 0.28125 -6.828125 L 0.28125 -6.515625 L 0.546875 -6.515625 C 1.328125 -6.515625 1.359375 -6.40625 1.359375 -6.046875 L 1.359375 -0.78125 C 1.359375 -0.421875 1.328125 -0.3125 0.546875 -0.3125 L 0.28125 -0.3125 L 0.28125 0 C 0.625 -0.03125 1.421875 -0.03125 1.796875 -0.03125 C 2.1875 -0.03125 2.984375 -0.03125 3.328125 0 L 3.328125 -0.3125 L 3.0625 -0.3125 C 2.28125 -0.3125 2.25 -0.421875 2.25 -0.78125 Z M 2.25 -6.046875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-27">
<path style="stroke:none;" d="M 3.296875 -4 C 3.765625 -4 3.828125 -3.875 3.828125 -3.453125 L 3.828125 -0.765625 C 3.828125 -0.3125 3.71875 -0.3125 3.046875 -0.3125 L 3.046875 0 C 3.375 -0.015625 3.90625 -0.03125 4.15625 -0.03125 C 4.40625 -0.03125 4.90625 -0.015625 5.265625 0 L 5.265625 -0.3125 C 4.59375 -0.3125 4.484375 -0.3125 4.484375 -0.765625 L 4.484375 -4.4375 L 3.234375 -4.34375 C 3.0625 -4.328125 3.0625 -4.3125 3.046875 -4.3125 C 3.03125 -4.3125 3.015625 -4.3125 2.875 -4.3125 L 1.6875 -4.3125 L 1.6875 -5.4375 C 1.6875 -6.4375 2.546875 -6.828125 3.171875 -6.828125 C 3.46875 -6.828125 3.828125 -6.734375 4.03125 -6.5 C 3.625 -6.484375 3.5625 -6.203125 3.5625 -6.046875 C 3.5625 -5.703125 3.8125 -5.578125 4.015625 -5.578125 C 4.234375 -5.578125 4.46875 -5.734375 4.46875 -6.046875 C 4.46875 -6.625 3.921875 -7.046875 3.1875 -7.046875 C 2.25 -7.046875 1.0625 -6.546875 1.0625 -5.453125 L 1.0625 -4.3125 L 0.265625 -4.3125 L 0.265625 -4 L 1.0625 -4 L 1.0625 -0.765625 C 1.0625 -0.3125 0.953125 -0.3125 0.28125 -0.3125 L 0.28125 0 C 0.609375 -0.015625 1.140625 -0.03125 1.390625 -0.03125 C 1.640625 -0.03125 2.125 -0.015625 2.5 0 L 2.5 -0.3125 C 1.828125 -0.3125 1.71875 -0.3125 1.71875 -0.765625 L 1.71875 -4 Z M 3.296875 -4 "/>
</symbol>
<symbol overflow="visible" id="glyph0-28">
<path style="stroke:none;" d="M 2.765625 -1.875 L 2.765625 -2.453125 L 0.109375 -2.453125 L 0.109375 -1.875 Z M 2.765625 -1.875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-29">
<path style="stroke:none;" d="M 1.71875 -3.765625 L 1.71875 -4.421875 L 0.28125 -4.3125 L 0.28125 -4 C 0.984375 -4 1.0625 -3.9375 1.0625 -3.5 L 1.0625 1.1875 C 1.0625 1.625 0.953125 1.625 0.28125 1.625 L 0.28125 1.9375 C 0.625 1.9375 1.140625 1.90625 1.40625 1.90625 C 1.671875 1.90625 2.1875 1.9375 2.53125 1.9375 L 2.53125 1.625 C 1.859375 1.625 1.75 1.625 1.75 1.1875 L 1.75 -0.59375 C 1.796875 -0.4375 2.21875 0.109375 2.984375 0.109375 C 4.171875 0.109375 5.203125 -0.875 5.203125 -2.15625 C 5.203125 -3.4375 4.234375 -4.421875 3.125 -4.421875 C 2.34375 -4.421875 1.921875 -3.984375 1.71875 -3.765625 Z M 1.75 -1.140625 L 1.75 -3.375 C 2.046875 -3.875 2.53125 -4.171875 3.046875 -4.171875 C 3.765625 -4.171875 4.375 -3.296875 4.375 -2.15625 C 4.375 -0.953125 3.6875 -0.109375 2.9375 -0.109375 C 2.546875 -0.109375 2.15625 -0.3125 1.890625 -0.71875 C 1.75 -0.9375 1.75 -0.9375 1.75 -1.140625 Z M 1.75 -1.140625 "/>
</symbol>
<symbol overflow="visible" id="glyph0-30">
<path style="stroke:none;" d="M 2.078125 -1.9375 C 2.296875 -1.90625 3.125 -1.734375 3.125 -1.015625 C 3.125 -0.515625 2.765625 -0.109375 1.984375 -0.109375 C 1.15625 -0.109375 0.796875 -0.6875 0.59375 -1.53125 C 0.5625 -1.65625 0.5625 -1.703125 0.453125 -1.703125 C 0.328125 -1.703125 0.328125 -1.625 0.328125 -1.453125 L 0.328125 -0.125 C 0.328125 0.046875 0.328125 0.109375 0.4375 0.109375 C 0.484375 0.109375 0.5 0.09375 0.6875 -0.09375 C 0.703125 -0.109375 0.703125 -0.125 0.890625 -0.3125 C 1.328125 0.09375 1.78125 0.109375 1.984375 0.109375 C 3.140625 0.109375 3.59375 -0.5625 3.59375 -1.28125 C 3.59375 -1.8125 3.296875 -2.109375 3.1875 -2.234375 C 2.84375 -2.546875 2.453125 -2.625 2.046875 -2.703125 C 1.484375 -2.8125 0.8125 -2.953125 0.8125 -3.53125 C 0.8125 -3.875 1.0625 -4.296875 1.9375 -4.296875 C 3.03125 -4.296875 3.078125 -3.390625 3.09375 -3.078125 C 3.109375 -2.984375 3.203125 -2.984375 3.21875 -2.984375 C 3.34375 -2.984375 3.34375 -3.046875 3.34375 -3.234375 L 3.34375 -4.234375 C 3.34375 -4.40625 3.34375 -4.484375 3.234375 -4.484375 C 3.1875 -4.484375 3.171875 -4.484375 3.046875 -4.359375 C 3.015625 -4.3125 2.90625 -4.234375 2.875 -4.203125 C 2.484375 -4.484375 2.078125 -4.484375 1.9375 -4.484375 C 0.703125 -4.484375 0.328125 -3.8125 0.328125 -3.25 C 0.328125 -2.90625 0.484375 -2.625 0.765625 -2.40625 C 1.078125 -2.140625 1.359375 -2.078125 2.078125 -1.9375 Z M 2.078125 -1.9375 "/>
</symbol>
<symbol overflow="visible" id="glyph0-31">
<path style="stroke:none;" d="M 1.765625 -6.9375 L 0.328125 -6.828125 L 0.328125 -6.515625 C 1.03125 -6.515625 1.109375 -6.453125 1.109375 -5.953125 L 1.109375 -0.765625 C 1.109375 -0.3125 1 -0.3125 0.328125 -0.3125 L 0.328125 0 C 0.65625 -0.015625 1.1875 -0.03125 1.4375 -0.03125 C 1.6875 -0.03125 2.1875 -0.015625 2.546875 0 L 2.546875 -0.3125 C 1.875 -0.3125 1.765625 -0.3125 1.765625 -0.765625 Z M 1.765625 -6.9375 "/>
</symbol>
<symbol overflow="visible" id="glyph0-32">
<path style="stroke:none;" d="M 3.90625 -0.796875 L 3.90625 0.109375 L 5.34375 0 L 5.34375 -0.3125 C 4.65625 -0.3125 4.5625 -0.375 4.5625 -0.875 L 4.5625 -4.421875 L 3.09375 -4.3125 L 3.09375 -4 C 3.796875 -4 3.875 -3.9375 3.875 -3.4375 L 3.875 -1.65625 C 3.875 -0.796875 3.40625 -0.109375 2.671875 -0.109375 C 1.828125 -0.109375 1.796875 -0.578125 1.796875 -1.09375 L 1.796875 -4.421875 L 0.3125 -4.3125 L 0.3125 -4 C 1.09375 -4 1.09375 -3.96875 1.09375 -3.078125 L 1.09375 -1.578125 C 1.09375 -0.796875 1.09375 0.109375 2.625 0.109375 C 3.1875 0.109375 3.625 -0.171875 3.90625 -0.796875 Z M 3.90625 -0.796875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-33">
<path style="stroke:none;" d="M 0.5625 -3.421875 C 0.5625 -1.34375 2.1875 0.21875 4.046875 0.21875 C 5.671875 0.21875 6.65625 -1.171875 6.65625 -2.328125 C 6.65625 -2.4375 6.65625 -2.5 6.515625 -2.5 C 6.40625 -2.5 6.40625 -2.4375 6.40625 -2.34375 C 6.3125 -0.90625 5.25 -0.09375 4.15625 -0.09375 C 3.546875 -0.09375 1.59375 -0.4375 1.59375 -3.40625 C 1.59375 -6.40625 3.546875 -6.734375 4.15625 -6.734375 C 5.234375 -6.734375 6.125 -5.828125 6.328125 -4.375 C 6.34375 -4.234375 6.34375 -4.203125 6.484375 -4.203125 C 6.65625 -4.203125 6.65625 -4.234375 6.65625 -4.4375 L 6.65625 -6.8125 C 6.65625 -6.984375 6.65625 -7.046875 6.546875 -7.046875 C 6.5 -7.046875 6.453125 -7.046875 6.375 -6.9375 L 5.875 -6.1875 C 5.515625 -6.546875 5 -7.046875 4.046875 -7.046875 C 2.171875 -7.046875 0.5625 -5.453125 0.5625 -3.421875 Z M 0.5625 -3.421875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-34">
<path style="stroke:none;" d="M 4.15625 -3.359375 C 4.40625 -3.984375 4.921875 -4 5.078125 -4 L 5.078125 -4.3125 C 4.84375 -4.296875 4.5625 -4.28125 4.328125 -4.28125 C 4.15625 -4.28125 3.6875 -4.296875 3.453125 -4.3125 L 3.453125 -4 C 3.765625 -3.984375 3.9375 -3.8125 3.9375 -3.5625 C 3.9375 -3.46875 3.921875 -3.453125 3.875 -3.328125 L 2.859375 -0.875 L 1.75 -3.5625 C 1.703125 -3.65625 1.6875 -3.703125 1.6875 -3.734375 C 1.6875 -4 2.0625 -4 2.25 -4 L 2.25 -4.3125 C 1.984375 -4.296875 1.328125 -4.28125 1.15625 -4.28125 C 0.890625 -4.28125 0.484375 -4.296875 0.1875 -4.3125 L 0.1875 -4 C 0.671875 -4 0.859375 -4 1 -3.65625 L 2.5 0 C 2.453125 0.125 2.3125 0.453125 2.25 0.59375 C 2.03125 1.140625 1.75 1.828125 1.109375 1.828125 C 1.0625 1.828125 0.828125 1.828125 0.640625 1.65625 C 0.953125 1.609375 1.03125 1.390625 1.03125 1.234375 C 1.03125 0.96875 0.84375 0.8125 0.609375 0.8125 C 0.40625 0.8125 0.1875 0.9375 0.1875 1.234375 C 0.1875 1.6875 0.609375 2.046875 1.109375 2.046875 C 1.734375 2.046875 2.15625 1.484375 2.390625 0.90625 Z M 4.15625 -3.359375 "/>
</symbol>
<symbol overflow="visible" id="glyph0-35">
<path style="stroke:none;" d="M 3.484375 -3.875 L 2.203125 -4.1875 C 1.59375 -4.34375 1.203125 -4.875 1.203125 -5.453125 C 1.203125 -6.15625 1.734375 -6.765625 2.515625 -6.765625 C 4.1875 -6.765625 4.40625 -5.125 4.46875 -4.6875 C 4.484375 -4.625 4.484375 -4.5625 4.59375 -4.5625 C 4.71875 -4.5625 4.71875 -4.609375 4.71875 -4.796875 L 4.71875 -6.8125 C 4.71875 -6.984375 4.71875 -7.046875 4.609375 -7.046875 C 4.546875 -7.046875 4.53125 -7.046875 4.453125 -6.921875 L 4.109375 -6.34375 C 3.8125 -6.640625 3.40625 -7.046875 2.515625 -7.046875 C 1.40625 -7.046875 0.5625 -6.171875 0.5625 -5.109375 C 0.5625 -4.28125 1.09375 -3.546875 1.875 -3.28125 C 1.984375 -3.234375 2.484375 -3.125 3.1875 -2.953125 C 3.453125 -2.875 3.765625 -2.8125 4.046875 -2.4375 C 4.25 -2.1875 4.34375 -1.84375 4.34375 -1.515625 C 4.34375 -0.8125 3.84375 -0.09375 3.015625 -0.09375 C 2.71875 -0.09375 1.953125 -0.140625 1.4375 -0.625 C 0.84375 -1.171875 0.8125 -1.8125 0.8125 -2.171875 C 0.796875 -2.265625 0.71875 -2.265625 0.6875 -2.265625 C 0.5625 -2.265625 0.5625 -2.203125 0.5625 -2.015625 L 0.5625 -0.015625 C 0.5625 0.15625 0.5625 0.21875 0.671875 0.21875 C 0.734375 0.21875 0.75 0.203125 0.8125 0.09375 C 0.8125 0.078125 0.84375 0.046875 1.1875 -0.484375 C 1.484375 -0.140625 2.125 0.21875 3.015625 0.21875 C 4.1875 0.21875 4.984375 -0.765625 4.984375 -1.859375 C 4.984375 -2.859375 4.328125 -3.6875 3.484375 -3.875 Z M 3.484375 -3.875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-36">
<path style="stroke:none;" d="M 5.8125 -2.578125 L 5.5625 -2.578125 C 5.453125 -1.5625 5.3125 -0.3125 3.5625 -0.3125 L 2.734375 -0.3125 C 2.265625 -0.3125 2.25 -0.375 2.25 -0.703125 L 2.25 -6.046875 C 2.25 -6.375 2.25 -6.515625 3.203125 -6.515625 L 3.53125 -6.515625 L 3.53125 -6.828125 C 3.171875 -6.796875 2.265625 -6.796875 1.84375 -6.796875 C 1.453125 -6.796875 0.6875 -6.796875 0.328125 -6.828125 L 0.328125 -6.515625 L 0.5625 -6.515625 C 1.34375 -6.515625 1.359375 -6.40625 1.359375 -6.046875 L 1.359375 -0.78125 C 1.359375 -0.421875 1.34375 -0.3125 0.5625 -0.3125 L 0.328125 -0.3125 L 0.328125 0 L 5.546875 0 Z M 5.8125 -2.578125 "/>
</symbol>
<symbol overflow="visible" id="glyph0-37">
<path style="stroke:none;" d="M 5.9375 -0.625 C 6.0625 -0.40625 6.453125 -0.015625 6.5625 -0.015625 C 6.65625 -0.015625 6.65625 -0.09375 6.65625 -0.234375 L 6.65625 -1.984375 C 6.65625 -2.375 6.703125 -2.421875 7.34375 -2.421875 L 7.34375 -2.734375 C 6.984375 -2.71875 6.4375 -2.703125 6.125 -2.703125 C 5.734375 -2.703125 4.875 -2.703125 4.515625 -2.734375 L 4.515625 -2.421875 L 4.84375 -2.421875 C 5.734375 -2.421875 5.765625 -2.3125 5.765625 -1.9375 L 5.765625 -1.296875 C 5.765625 -0.1875 4.5 -0.09375 4.21875 -0.09375 C 3.5625 -0.09375 1.59375 -0.4375 1.59375 -3.421875 C 1.59375 -6.40625 3.5625 -6.734375 4.15625 -6.734375 C 5.234375 -6.734375 6.140625 -5.84375 6.34375 -4.375 C 6.359375 -4.234375 6.359375 -4.203125 6.5 -4.203125 C 6.65625 -4.203125 6.65625 -4.234375 6.65625 -4.4375 L 6.65625 -6.8125 C 6.65625 -6.984375 6.65625 -7.046875 6.546875 -7.046875 C 6.515625 -7.046875 6.46875 -7.046875 6.390625 -6.9375 L 5.890625 -6.1875 C 5.5625 -6.515625 5.03125 -7.046875 4.046875 -7.046875 C 2.1875 -7.046875 0.5625 -5.46875 0.5625 -3.421875 C 0.5625 -1.375 2.15625 0.21875 4.0625 0.21875 C 4.796875 0.21875 5.59375 -0.046875 5.9375 -0.625 Z M 5.9375 -0.625 "/>
</symbol>
<symbol overflow="visible" id="glyph0-38">
<path style="stroke:none;" d="M 6.09375 -5.875 C 6.46875 -6.484375 7.0625 -6.515625 7.375 -6.515625 L 7.375 -6.828125 C 7.0625 -6.8125 6.671875 -6.796875 6.40625 -6.796875 C 6.09375 -6.796875 5.515625 -6.8125 5.25 -6.828125 L 5.25 -6.515625 C 5.65625 -6.515625 5.8125 -6.328125 5.8125 -6.125 C 5.8125 -6.015625 5.765625 -5.890625 5.71875 -5.828125 L 4.0625 -3.15625 L 2.265625 -6.09375 C 2.1875 -6.203125 2.1875 -6.21875 2.1875 -6.265625 C 2.1875 -6.484375 2.4375 -6.515625 2.890625 -6.515625 L 2.890625 -6.828125 C 2.53125 -6.796875 1.796875 -6.796875 1.40625 -6.796875 C 0.984375 -6.796875 0.53125 -6.8125 0.109375 -6.828125 L 0.109375 -6.515625 L 0.296875 -6.515625 C 0.96875 -6.515625 1.046875 -6.40625 1.203125 -6.15625 L 3.3125 -2.734375 L 3.3125 -0.78125 C 3.3125 -0.421875 3.296875 -0.3125 2.515625 -0.3125 L 2.28125 -0.3125 L 2.28125 0 C 2.640625 -0.03125 3.34375 -0.03125 3.734375 -0.03125 C 4.125 -0.03125 4.84375 -0.03125 5.203125 0 L 5.203125 -0.3125 L 4.96875 -0.3125 C 4.203125 -0.3125 4.171875 -0.40625 4.171875 -0.796875 L 4.171875 -2.734375 Z M 6.09375 -5.875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-39">
<path style="stroke:none;" d="M 6.1875 -3.359375 C 6.375 -3.859375 6.6875 -3.984375 7.03125 -4 L 7.03125 -4.3125 C 6.8125 -4.296875 6.515625 -4.28125 6.296875 -4.28125 C 6.015625 -4.28125 5.5625 -4.296875 5.375 -4.3125 L 5.375 -4 C 5.734375 -3.984375 5.953125 -3.8125 5.953125 -3.515625 C 5.953125 -3.453125 5.953125 -3.4375 5.90625 -3.3125 L 4.984375 -0.75 L 4 -3.546875 C 3.953125 -3.65625 3.953125 -3.6875 3.953125 -3.734375 C 3.953125 -4 4.34375 -4 4.546875 -4 L 4.546875 -4.3125 C 4.25 -4.296875 3.734375 -4.28125 3.5 -4.28125 C 3.203125 -4.28125 2.90625 -4.296875 2.609375 -4.3125 L 2.609375 -4 C 2.984375 -4 3.140625 -3.984375 3.234375 -3.84375 C 3.296875 -3.796875 3.40625 -3.484375 3.46875 -3.296875 L 2.609375 -0.875 L 1.65625 -3.546875 C 1.609375 -3.671875 1.609375 -3.6875 1.609375 -3.734375 C 1.609375 -4 2 -4 2.203125 -4 L 2.203125 -4.3125 C 1.90625 -4.296875 1.34375 -4.28125 1.109375 -4.28125 C 1.0625 -4.28125 0.546875 -4.296875 0.1875 -4.3125 L 0.1875 -4 C 0.6875 -4 0.796875 -3.96875 0.921875 -3.65625 L 2.1875 -0.109375 C 2.234375 0.03125 2.265625 0.109375 2.390625 0.109375 C 2.515625 0.109375 2.546875 0.046875 2.59375 -0.09375 L 3.59375 -2.921875 L 4.625 -0.078125 C 4.65625 0.03125 4.6875 0.109375 4.8125 0.109375 C 4.953125 0.109375 4.984375 0.015625 5.015625 -0.078125 Z M 6.1875 -3.359375 "/>
</symbol>
<symbol overflow="visible" id="glyph1-0">
<path style="stroke:none;" d=""/>
</symbol>
@@ -148,265 +190,303 @@
</symbol>
</g>
<clipPath id="clip1">
<path d="M 18 14 L 436.769531 14 L 436.769531 143 L 18 143 Z M 18 14 "/>
<path d="M 18 36 L 295.039062 36 L 295.039062 130 L 18 130 Z M 18 36 "/>
</clipPath>
<clipPath id="clip2">
<path d="M 18 60 L 436.769531 60 L 436.769531 264 L 18 264 Z M 18 60 "/>
<path d="M 18 65 L 295.039062 65 L 295.039062 208 L 18 208 Z M 18 65 "/>
</clipPath>
<clipPath id="clip3">
<path d="M 18 66 L 436.769531 66 L 436.769531 217 L 18 217 Z M 18 66 "/>
<path d="M 18 69 L 295.039062 69 L 295.039062 178 L 18 178 Z M 18 69 "/>
</clipPath>
<clipPath id="clip4">
<path d="M 215 217 L 228 217 L 228 227.941406 L 215 227.941406 Z M 215 217 "/>
</clipPath>
</defs>
<g id="surface1">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.846875 L 349.414062 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 746.328125 353.846875 L 746.328125 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1143.125 353.846875 L 1143.125 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1540 353.846875 L 1540 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1936.796875 353.846875 L 1936.796875 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2333.710938 353.846875 L 2333.710938 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2730.507812 353.846875 L 2730.507812 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3127.421875 353.846875 L 3127.421875 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3524.21875 353.846875 L 3524.21875 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3921.09375 353.846875 L 3921.09375 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4317.890625 353.846875 L 4317.890625 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 451.932812 L 4317.890625 451.932812 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 550.01875 L 4317.890625 550.01875 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 648.14375 L 4317.890625 648.14375 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 746.229687 L 4317.890625 746.229687 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 942.440625 L 4317.890625 942.440625 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1040.526562 L 4317.890625 1040.526562 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1138.729687 L 4317.890625 1138.729687 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1236.854687 L 4317.890625 1236.854687 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1433.026562 L 4317.890625 1433.026562 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1531.1125 L 4317.890625 1531.1125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1629.2375 L 4317.890625 1629.2375 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1727.323437 L 4317.890625 1727.323437 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1923.534375 L 4317.890625 1923.534375 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2021.620312 L 4317.890625 2021.620312 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2119.745312 L 4317.890625 2119.745312 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2217.83125 L 4317.890625 2217.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2414.042187 L 4317.890625 2414.042187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2512.128125 L 4317.890625 2512.128125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2610.33125 L 4317.890625 2610.33125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2708.417187 L 4317.890625 2708.417187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.846875 L 4317.890625 353.846875 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 844.354687 L 4317.890625 844.354687 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1334.940625 L 4317.890625 1334.940625 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1825.448437 L 4317.890625 1825.448437 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2315.917187 L 4317.890625 2315.917187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2806.542187 L 4317.890625 2806.542187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:17.0079;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-dasharray:34;stroke-miterlimit:10;" d="M 349.414062 843.14375 L 4317.890625 843.14375 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.853125 L 349.414062 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 604.492188 353.853125 L 604.492188 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 859.609375 353.853125 L 859.609375 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1114.804688 353.853125 L 1114.804688 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1369.921875 353.853125 L 1369.921875 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1625 353.853125 L 1625 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1880.117188 353.853125 L 1880.117188 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2135.195312 353.853125 L 2135.195312 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2390.3125 353.853125 L 2390.3125 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2645.507812 353.853125 L 2645.507812 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2900.625 353.853125 L 2900.625 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 511.548438 L 2900.625 511.548438 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 669.126563 L 2900.625 669.126563 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 826.821875 L 2900.625 826.821875 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 984.517188 L 2900.625 984.517188 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1299.829688 L 2900.625 1299.829688 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1457.525 L 2900.625 1457.525 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1615.220313 L 2900.625 1615.220313 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1772.8375 L 2900.625 1772.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.853125 L 2900.625 353.853125 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1142.2125 L 2900.625 1142.2125 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1930.532813 L 2900.625 1930.532813 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:17.0079;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-dasharray:34;stroke-miterlimit:10;" d="M 349.414062 668.345313 L 2900.625 668.345313 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g clip-path="url(#clip1)" clip-rule="nonzero">
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,67.83905%,93.728638%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1576.932812 L 746.328125 2155.448437 L 1143.125 2435.057812 L 1540 2525.135937 L 1936.796875 2534.55 L 2333.710938 2419.2375 L 2730.507812 2364.940625 L 3127.421875 2307.323437 L 3524.21875 2262.440625 L 3921.09375 2224.042187 L 4317.890625 2181.620312 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 32.691406 128.636719 L 37.191406 128.636719 L 37.191406 124.136719 L 32.691406 124.136719 Z M 32.691406 128.636719 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 72.382812 70.785156 L 76.882812 70.785156 L 76.882812 66.285156 L 72.382812 66.285156 Z M 72.382812 70.785156 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 112.0625 42.824219 L 116.5625 42.824219 L 116.5625 38.324219 L 112.0625 38.324219 Z M 112.0625 42.824219 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 151.75 33.816406 L 156.25 33.816406 L 156.25 29.316406 L 151.75 29.316406 Z M 151.75 33.816406 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 191.429688 32.875 L 195.929688 32.875 L 195.929688 28.375 L 191.429688 28.375 Z M 191.429688 32.875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 231.121094 44.40625 L 235.621094 44.40625 L 235.621094 39.90625 L 231.121094 39.90625 Z M 231.121094 44.40625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 270.800781 49.835938 L 275.300781 49.835938 L 275.300781 45.335938 L 270.800781 45.335938 Z M 270.800781 49.835938 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 310.492188 55.597656 L 314.992188 55.597656 L 314.992188 51.097656 L 310.492188 51.097656 Z M 310.492188 55.597656 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 350.171875 60.085938 L 354.671875 60.085938 L 354.671875 55.585938 L 350.171875 55.585938 Z M 350.171875 60.085938 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 389.859375 63.925781 L 394.359375 63.925781 L 394.359375 59.425781 L 389.859375 59.425781 Z M 389.859375 63.925781 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 429.539062 68.167969 L 434.039062 68.167969 L 434.039062 63.667969 L 429.539062 63.667969 Z M 429.539062 68.167969 "/>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,67.83905%,93.728638%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1144.048438 L 604.492188 1513.228125 L 859.609375 1687.915625 L 1114.804688 1742.329688 L 1369.921875 1758.110938 L 1625 1682.915625 L 1880.117188 1645.415625 L 2135.195312 1616.11875 L 2390.3125 1575.025 L 2645.507812 1555.610938 L 2900.625 1517.2125 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 32.691406 115.785156 L 37.191406 115.785156 L 37.191406 111.285156 L 32.691406 111.285156 Z M 32.691406 115.785156 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 58.199219 78.867188 L 62.699219 78.867188 L 62.699219 74.367188 L 58.199219 74.367188 Z M 58.199219 78.867188 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 83.710938 61.398438 L 88.210938 61.398438 L 88.210938 56.898438 L 83.710938 56.898438 Z M 83.710938 61.398438 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 109.230469 55.957031 L 113.730469 55.957031 L 113.730469 51.457031 L 109.230469 51.457031 Z M 109.230469 55.957031 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 134.742188 54.378906 L 139.242188 54.378906 L 139.242188 49.878906 L 134.742188 49.878906 Z M 134.742188 54.378906 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 160.25 61.898438 L 164.75 61.898438 L 164.75 57.398438 L 160.25 57.398438 Z M 160.25 61.898438 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 185.761719 65.648438 L 190.261719 65.648438 L 190.261719 61.148438 L 185.761719 61.148438 Z M 185.761719 65.648438 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 211.269531 68.578125 L 215.769531 68.578125 L 215.769531 64.078125 L 211.269531 64.078125 Z M 211.269531 68.578125 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 236.78125 72.6875 L 241.28125 72.6875 L 241.28125 68.1875 L 236.78125 68.1875 Z M 236.78125 72.6875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 262.300781 74.628906 L 266.800781 74.628906 L 266.800781 70.128906 L 262.300781 70.128906 Z M 262.300781 74.628906 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 287.8125 78.46875 L 292.3125 78.46875 L 292.3125 73.96875 L 287.8125 73.96875 Z M 287.8125 78.46875 "/>
<g clip-path="url(#clip2)" clip-rule="nonzero">
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,31.369019%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 699.823437 L 746.328125 637.323437 L 1143.125 571.346875 L 1540 489.940625 L 1936.796875 367.948437 L 2333.710938 557.128125 L 2730.507812 804.042187 L 3127.421875 1099.354687 L 3524.21875 1423.729687 L 3921.09375 1751.854687 L 4317.890625 2080.135937 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 37.414062 214.097656 C 37.414062 212.730469 36.308594 211.621094 34.941406 211.621094 C 33.574219 211.621094 32.464844 212.730469 32.464844 214.097656 C 32.464844 215.464844 33.574219 216.570312 34.941406 216.570312 C 36.308594 216.570312 37.414062 215.464844 37.414062 214.097656 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 77.105469 220.347656 C 77.105469 218.980469 75.996094 217.871094 74.632812 217.871094 C 73.265625 217.871094 72.15625 218.980469 72.15625 220.347656 C 72.15625 221.714844 73.265625 222.820312 74.632812 222.820312 C 75.996094 222.820312 77.105469 221.714844 77.105469 220.347656 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 116.785156 226.945312 C 116.785156 225.578125 115.675781 224.472656 114.3125 224.472656 C 112.945312 224.472656 111.835938 225.578125 111.835938 226.945312 C 111.835938 228.3125 112.945312 229.421875 114.3125 229.421875 C 115.675781 229.421875 116.785156 228.3125 116.785156 226.945312 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 156.476562 235.085938 C 156.476562 233.71875 155.367188 232.613281 154 232.613281 C 152.632812 232.613281 151.527344 233.71875 151.527344 235.085938 C 151.527344 236.453125 152.632812 237.5625 154 237.5625 C 155.367188 237.5625 156.476562 236.453125 156.476562 235.085938 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 196.15625 247.285156 C 196.15625 245.917969 195.046875 244.8125 193.679688 244.8125 C 192.3125 244.8125 191.207031 245.917969 191.207031 247.285156 C 191.207031 248.652344 192.3125 249.761719 193.679688 249.761719 C 195.046875 249.761719 196.15625 248.652344 196.15625 247.285156 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 235.847656 228.367188 C 235.847656 227 234.738281 225.890625 233.371094 225.890625 C 232.003906 225.890625 230.894531 227 230.894531 228.367188 C 230.894531 229.734375 232.003906 230.839844 233.371094 230.839844 C 234.738281 230.839844 235.847656 229.734375 235.847656 228.367188 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 275.527344 203.675781 C 275.527344 202.308594 274.417969 201.203125 273.050781 201.203125 C 271.683594 201.203125 270.574219 202.308594 270.574219 203.675781 C 270.574219 205.042969 271.683594 206.152344 273.050781 206.152344 C 274.417969 206.152344 275.527344 205.042969 275.527344 203.675781 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 315.214844 174.144531 C 315.214844 172.78125 314.105469 171.671875 312.742188 171.671875 C 311.375 171.671875 310.265625 172.78125 310.265625 174.144531 C 310.265625 175.511719 311.375 176.621094 312.742188 176.621094 C 314.105469 176.621094 315.214844 175.511719 315.214844 174.144531 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 354.894531 141.707031 C 354.894531 140.339844 353.789062 139.230469 352.421875 139.230469 C 351.054688 139.230469 349.945312 140.339844 349.945312 141.707031 C 349.945312 143.074219 351.054688 144.183594 352.421875 144.183594 C 353.789062 144.183594 354.894531 143.074219 354.894531 141.707031 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 394.585938 108.894531 C 394.585938 107.53125 393.476562 106.421875 392.109375 106.421875 C 390.742188 106.421875 389.636719 107.53125 389.636719 108.894531 C 389.636719 110.261719 390.742188 111.371094 392.109375 111.371094 C 393.476562 111.371094 394.585938 110.261719 394.585938 108.894531 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 434.265625 76.066406 C 434.265625 74.699219 433.15625 73.59375 431.789062 73.59375 C 430.425781 73.59375 429.316406 74.699219 429.316406 76.066406 C 429.316406 77.433594 430.425781 78.542969 431.789062 78.542969 C 433.15625 78.542969 434.265625 77.433594 434.265625 76.066406 "/>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,31.369019%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 575.3375 L 604.492188 535.65 L 859.609375 491.235938 L 1114.804688 440.220313 L 1369.921875 362.915625 L 1625 483.15 L 1880.117188 644.946875 L 2135.195312 837.8375 L 2390.3125 1043.110938 L 2645.507812 1251.74375 L 2900.625 1462.720313 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 37.414062 170.40625 C 37.414062 169.039062 36.308594 167.929688 34.941406 167.929688 C 33.574219 167.929688 32.464844 169.039062 32.464844 170.40625 C 32.464844 171.773438 33.574219 172.882812 34.941406 172.882812 C 36.308594 172.882812 37.414062 171.773438 37.414062 170.40625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 62.925781 174.375 C 62.925781 173.011719 61.816406 171.902344 60.449219 171.902344 C 59.085938 171.902344 57.976562 173.011719 57.976562 174.375 C 57.976562 175.742188 59.085938 176.851562 60.449219 176.851562 C 61.816406 176.851562 62.925781 175.742188 62.925781 174.375 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 88.433594 178.816406 C 88.433594 177.449219 87.328125 176.339844 85.960938 176.339844 C 84.59375 176.339844 83.484375 177.449219 83.484375 178.816406 C 83.484375 180.183594 84.59375 181.292969 85.960938 181.292969 C 87.328125 181.292969 88.433594 180.183594 88.433594 178.816406 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 113.957031 183.917969 C 113.957031 182.550781 112.847656 181.441406 111.480469 181.441406 C 110.113281 181.441406 109.007812 182.550781 109.007812 183.917969 C 109.007812 185.285156 110.113281 186.390625 111.480469 186.390625 C 112.847656 186.390625 113.957031 185.285156 113.957031 183.917969 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 139.464844 191.648438 C 139.464844 190.28125 138.355469 189.171875 136.992188 189.171875 C 135.625 189.171875 134.515625 190.28125 134.515625 191.648438 C 134.515625 193.011719 135.625 194.121094 136.992188 194.121094 C 138.355469 194.121094 139.464844 193.011719 139.464844 191.648438 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 164.976562 179.625 C 164.976562 178.261719 163.867188 177.152344 162.5 177.152344 C 161.132812 177.152344 160.027344 178.261719 160.027344 179.625 C 160.027344 180.992188 161.132812 182.101562 162.5 182.101562 C 163.867188 182.101562 164.976562 180.992188 164.976562 179.625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 190.484375 163.445312 C 190.484375 162.078125 189.378906 160.972656 188.011719 160.972656 C 186.644531 160.972656 185.535156 162.078125 185.535156 163.445312 C 185.535156 164.8125 186.644531 165.921875 188.011719 165.921875 C 189.378906 165.921875 190.484375 164.8125 190.484375 163.445312 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 215.996094 144.15625 C 215.996094 142.789062 214.886719 141.679688 213.519531 141.679688 C 212.152344 141.679688 211.046875 142.789062 211.046875 144.15625 C 211.046875 145.523438 212.152344 146.632812 213.519531 146.632812 C 214.886719 146.632812 215.996094 145.523438 215.996094 144.15625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 241.507812 123.628906 C 241.507812 122.261719 240.398438 121.152344 239.03125 121.152344 C 237.664062 121.152344 236.554688 122.261719 236.554688 123.628906 C 236.554688 124.992188 237.664062 126.101562 239.03125 126.101562 C 240.398438 126.101562 241.507812 124.992188 241.507812 123.628906 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 267.027344 102.765625 C 267.027344 101.398438 265.917969 100.292969 264.550781 100.292969 C 263.183594 100.292969 262.074219 101.398438 262.074219 102.765625 C 262.074219 104.132812 263.183594 105.242188 264.550781 105.242188 C 265.917969 105.242188 267.027344 104.132812 267.027344 102.765625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 292.535156 81.667969 C 292.535156 80.300781 291.425781 79.191406 290.0625 79.191406 C 288.695312 79.191406 287.585938 80.300781 287.585938 81.667969 C 287.585938 83.03125 288.695312 84.140625 290.0625 84.140625 C 291.425781 84.140625 292.535156 83.03125 292.535156 81.667969 "/>
<g clip-path="url(#clip3)" clip-rule="nonzero">
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,94.898987%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 837.128125 L 746.328125 905.526562 L 1143.125 977.753125 L 1540 1055.057812 L 1936.796875 1144.55 L 2333.710938 1235.64375 L 2730.507812 1337.557812 L 3127.421875 1454.120312 L 3524.21875 1590.917187 L 3921.09375 1771.620312 L 4317.890625 2019.628125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,94.898987%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 664.751563 L 604.492188 707.8375 L 859.609375 755.415625 L 1114.804688 804.126563 L 1369.921875 863.032813 L 1625 920.923438 L 1880.117188 987.446875 L 2135.195312 1062.134375 L 2390.3125 1149.634375 L 2645.507812 1265.532813 L 2900.625 1423.735938 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 38.488281 163.714844 L 34.941406 157.570312 L 31.390625 163.714844 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 64 159.40625 L 60.449219 153.257812 L 56.902344 159.40625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 89.511719 154.648438 L 85.960938 148.5 L 82.410156 154.648438 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 115.03125 149.777344 L 111.480469 143.628906 L 107.933594 149.777344 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 140.539062 143.886719 L 136.992188 137.738281 L 133.441406 143.886719 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 166.050781 138.097656 L 162.5 131.949219 L 158.953125 138.097656 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 191.558594 131.445312 L 188.011719 125.300781 L 184.460938 131.445312 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 217.070312 123.976562 L 213.519531 117.828125 L 209.972656 123.976562 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 242.578125 115.226562 L 239.03125 109.078125 L 235.480469 115.226562 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 268.101562 103.636719 L 264.550781 97.488281 L 261.003906 103.636719 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 293.609375 87.816406 L 290.0625 81.671875 L 286.511719 87.816406 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 285.621094 192.554688 L 284.511719 194.855469 L 290.0625 192.554688 L 284.511719 190.257812 Z M 285.621094 192.554688 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.853125 L 2856.210938 353.853125 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.853125 L 349.414062 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="32.45" y="207.9712"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 38.488281 202.617188 L 34.941406 196.46875 L 31.390625 202.617188 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 78.179688 195.777344 L 74.628906 189.628906 L 71.082031 195.777344 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 117.859375 188.554688 L 114.3125 182.410156 L 110.761719 188.554688 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 157.550781 180.824219 L 154 174.679688 L 150.453125 180.824219 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 197.230469 171.875 L 193.679688 165.730469 L 190.132812 171.875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 236.921875 162.765625 L 233.371094 156.617188 L 229.820312 162.765625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 276.601562 152.574219 L 273.050781 146.429688 L 269.503906 152.574219 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 316.289062 140.917969 L 312.742188 134.769531 L 309.191406 140.917969 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 355.96875 127.238281 L 352.421875 121.089844 L 348.871094 127.238281 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 395.660156 109.167969 L 392.109375 103.019531 L 388.5625 109.167969 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 435.339844 84.367188 L 431.789062 78.21875 L 428.242188 84.367188 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 427.359375 248.695312 L 426.25 250.996094 L 431.789062 248.695312 L 426.25 246.394531 Z M 427.359375 248.695312 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.846875 L 4273.59375 353.846875 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.846875 L 349.414062 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 604.492188 353.853125 L 604.492188 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="32.45" y="264.1112"/>
<use xlink:href="#glyph0-2" x="57.9598" y="207.9712"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 746.328125 353.846875 L 746.328125 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 859.609375 353.853125 L 859.609375 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="72.1398" y="264.1112"/>
<use xlink:href="#glyph0-3" x="83.4699" y="207.9712"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1143.125 353.846875 L 1143.125 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1114.804688 353.853125 L 1114.804688 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="111.82" y="264.1112"/>
<use xlink:href="#glyph0-4" x="108.99" y="207.9712"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1540 353.846875 L 1540 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1369.921875 353.853125 L 1369.921875 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-4" x="151.51" y="264.1112"/>
<use xlink:href="#glyph0-5" x="134.5" y="207.9712"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1936.796875 353.846875 L 1936.796875 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1625 353.853125 L 1625 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="191.19" y="264.1112"/>
<use xlink:href="#glyph0-6" x="160.01" y="207.9712"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2333.710938 353.846875 L 2333.710938 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1880.117188 353.853125 L 1880.117188 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-6" x="230.88" y="264.1112"/>
<use xlink:href="#glyph0-7" x="185.52" y="207.9712"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2730.507812 353.846875 L 2730.507812 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2135.195312 353.853125 L 2135.195312 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-7" x="270.56" y="264.1112"/>
<use xlink:href="#glyph0-8" x="211.03" y="207.9712"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3127.421875 353.846875 L 3127.421875 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2390.3125 353.853125 L 2390.3125 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-8" x="310.25" y="264.1112"/>
<use xlink:href="#glyph0-9" x="236.54" y="207.9712"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3524.21875 353.846875 L 3524.21875 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2645.507812 353.853125 L 2645.507812 387.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-9" x="349.93" y="264.1112"/>
<use xlink:href="#glyph0-1" x="259.57" y="207.9712"/>
<use xlink:href="#glyph0-10" x="264.57" y="207.9712"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3921.09375 353.846875 L 3921.09375 387.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="387.13" y="264.1112"/>
<use xlink:href="#glyph0-10" x="392.13" y="264.1112"/>
<use xlink:href="#glyph0-1" x="285.0802" y="207.9712"/>
<use xlink:href="#glyph0-1" x="290.0802" y="207.9712"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="426.8097" y="264.1112"/>
<use xlink:href="#glyph0-1" x="431.8097" y="264.1112"/>
<use xlink:href="#glyph0-11" x="96.79" y="224.9505"/>
<use xlink:href="#glyph0-12" x="104.42" y="224.9505"/>
<use xlink:href="#glyph0-13" x="107.19" y="224.9505"/>
<use xlink:href="#glyph0-14" x="112.19" y="224.9505"/>
<use xlink:href="#glyph0-15" x="120.52" y="224.9505"/>
<use xlink:href="#glyph0-16" x="124.96" y="224.9505"/>
<use xlink:href="#glyph0-15" x="128.84" y="224.9505"/>
<use xlink:href="#glyph0-17" x="133.28" y="224.9505"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-11" x="167.66" y="281.0905"/>
<use xlink:href="#glyph0-12" x="175.29" y="281.0905"/>
<use xlink:href="#glyph0-13" x="178.06" y="281.0905"/>
<use xlink:href="#glyph0-14" x="183.06" y="281.0905"/>
<use xlink:href="#glyph0-15" x="191.39" y="281.0905"/>
<use xlink:href="#glyph0-16" x="195.83" y="281.0905"/>
<use xlink:href="#glyph0-15" x="199.71" y="281.0905"/>
<use xlink:href="#glyph0-17" x="204.15" y="281.0905"/>
<use xlink:href="#glyph0-18" x="140.40445" y="224.9505"/>
<use xlink:href="#glyph0-19" x="145.40445" y="224.9505"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-18" x="211.27445" y="281.0905"/>
<use xlink:href="#glyph0-19" x="216.27445" y="281.0905"/>
<use xlink:href="#glyph0-16" x="151.75093" y="224.9505"/>
<use xlink:href="#glyph0-20" x="155.63093" y="224.9505"/>
<use xlink:href="#glyph0-15" x="161.18093" y="224.9505"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-16" x="222.62093" y="281.0905"/>
<use xlink:href="#glyph0-20" x="226.50093" y="281.0905"/>
<use xlink:href="#glyph0-15" x="232.05093" y="281.0905"/>
<use xlink:href="#glyph0-21" x="168.90875" y="224.9505"/>
<use xlink:href="#glyph0-17" x="174.45875" y="224.9505"/>
<use xlink:href="#glyph0-13" x="178.36875" y="224.9505"/>
<use xlink:href="#glyph0-22" x="183.36875" y="224.9505"/>
<use xlink:href="#glyph0-23" x="188.91875" y="224.9505"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-21" x="239.77875" y="281.0905"/>
<use xlink:href="#glyph0-17" x="245.32875" y="281.0905"/>
<use xlink:href="#glyph0-13" x="249.23875" y="281.0905"/>
<use xlink:href="#glyph0-22" x="254.23875" y="281.0905"/>
<use xlink:href="#glyph0-23" x="259.78875" y="281.0905"/>
<use xlink:href="#glyph0-20" x="193.012656" y="224.9505"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-20" x="263.883047" y="281.0905"/>
<use xlink:href="#glyph1-1" x="201.869" y="224.9505"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph1-1" x="272.739" y="281.0905"/>
<use xlink:href="#glyph2-1" x="207.05455" y="226.44503"/>
</g>
<g clip-path="url(#clip4)" clip-rule="nonzero">
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph2-1" x="277.92455" y="282.58503"/>
<use xlink:href="#glyph0-24" x="214.37682" y="224.9505"/>
<use xlink:href="#glyph0-12" x="217.14682" y="224.9505"/>
<use xlink:href="#glyph0-22" x="219.91682" y="224.9505"/>
<use xlink:href="#glyph0-25" x="225.46682" y="224.9505"/>
</g>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 34.941406 39.316406 L 37.242188 40.425781 L 34.941406 34.886719 L 32.640625 40.425781 Z M 34.941406 39.316406 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.853125 L 349.414062 1886.235938 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.853125 L 383.398438 353.853125 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-10" x="21.4598" y="196.0412"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1142.2125 L 383.398438 1142.2125 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="16.4801" y="117.201"/>
<use xlink:href="#glyph0-5" x="21.4801" y="117.201"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="16.4801" y="38.3709"/>
<use xlink:href="#glyph0-10" x="21.4801" y="38.3709"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 511.548438 L 373.515625 511.548438 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 669.126563 L 373.515625 669.126563 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 826.821875 L 373.515625 826.821875 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 984.517188 L 373.515625 984.517188 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1299.829688 L 373.515625 1299.829688 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1457.525 L 373.515625 1457.525 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1615.220313 L 373.515625 1615.220313 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1772.8375 L 373.515625 1772.8375 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-1" x="7.97461" y="171.0974"/>
<use xlink:href="#glyph3-2" x="7.97461" y="164.0174"/>
<use xlink:href="#glyph3-3" x="7.97461" y="159.5774"/>
<use xlink:href="#glyph3-4" x="7.97461" y="154.0274"/>
<use xlink:href="#glyph3-5" x="7.97461" y="148.4774"/>
<use xlink:href="#glyph3-3" x="7.97461" y="145.7074"/>
<use xlink:href="#glyph3-6" x="7.97461" y="140.1574"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-24" x="285.24721" y="281.0905"/>
<use xlink:href="#glyph0-12" x="288.01721" y="281.0905"/>
<use xlink:href="#glyph0-22" x="290.78721" y="281.0905"/>
<use xlink:href="#glyph0-25" x="296.33721" y="281.0905"/>
<use xlink:href="#glyph3-7" x="7.97461" y="131.93842"/>
<use xlink:href="#glyph3-8" x="7.97461" y="127.99842"/>
<use xlink:href="#glyph3-9" x="7.97461" y="124.11842"/>
<use xlink:href="#glyph3-2" x="7.97461" y="120.20842"/>
<use xlink:href="#glyph3-7" x="7.97461" y="115.76842"/>
<use xlink:href="#glyph3-7" x="7.97461" y="111.82842"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 34.941406 7.867188 L 37.242188 8.976562 L 34.941406 3.425781 L 32.640625 8.976562 Z M 34.941406 7.867188 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.846875 L 349.414062 2762.128125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 353.846875 L 383.398438 353.846875 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-10" x="21.4598" y="252.1812"/>
<use xlink:href="#glyph4-1" x="7.97461" y="104.6244"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 844.354687 L 383.398438 844.354687 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="16.4801" y="203.1312"/>
<use xlink:href="#glyph0-10" x="21.4801" y="203.1312"/>
<use xlink:href="#glyph4-2" x="7.97461" y="93.87284"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1334.940625 L 383.398438 1334.940625 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="16.4801" y="154.071"/>
<use xlink:href="#glyph0-10" x="21.4801" y="154.071"/>
<use xlink:href="#glyph3-10" x="7.97461" y="82.4955"/>
<use xlink:href="#glyph3-11" x="7.97461" y="79.7255"/>
<use xlink:href="#glyph3-12" x="7.97461" y="70.5655"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1825.448437 L 383.398438 1825.448437 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="16.4801" y="105.021"/>
<use xlink:href="#glyph0-10" x="21.4801" y="105.021"/>
<use xlink:href="#glyph3-13" x="7.97461" y="64.092294"/>
<use xlink:href="#glyph3-14" x="7.97461" y="59.092294"/>
</g>
<path style="fill:none;stroke-width:17.0079;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-dasharray:34;stroke-miterlimit:10;" d="M 627.8125 2226.939063 L 780.898438 2226.939063 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-26" x="83.1898" y="8.734"/>
<use xlink:href="#glyph0-22" x="86.7998" y="8.734"/>
<use xlink:href="#glyph0-27" x="92.3498" y="8.734"/>
<use xlink:href="#glyph0-22" x="97.8998" y="8.734"/>
<use xlink:href="#glyph0-12" x="103.4498" y="8.734"/>
<use xlink:href="#glyph0-16" x="106.2198" y="8.734"/>
<use xlink:href="#glyph0-15" x="110.0998" y="8.734"/>
<use xlink:href="#glyph0-28" x="114.5398" y="8.734"/>
<use xlink:href="#glyph0-29" x="117.8698" y="8.734"/>
<use xlink:href="#glyph0-12" x="123.4198" y="8.734"/>
<use xlink:href="#glyph0-29" x="126.1898" y="8.734"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-15" x="131.896367" y="8.734"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-30" x="139.644807" y="8.734"/>
<use xlink:href="#glyph0-18" x="143.584807" y="8.734"/>
<use xlink:href="#glyph0-31" x="148.584807" y="8.734"/>
<use xlink:href="#glyph0-32" x="151.354807" y="8.734"/>
<use xlink:href="#glyph0-16" x="156.904807" y="8.734"/>
<use xlink:href="#glyph0-12" x="160.784807" y="8.734"/>
<use xlink:href="#glyph0-18" x="163.554807" y="8.734"/>
<use xlink:href="#glyph0-22" x="168.554807" y="8.734"/>
</g>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,67.83905%,93.728638%);stroke-opacity:1;stroke-miterlimit:10;" d="M 627.8125 2089.7125 L 780.898438 2089.7125 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 68.191406 21.21875 L 72.691406 21.21875 L 72.691406 16.71875 L 68.191406 16.71875 Z M 68.191406 21.21875 "/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-33" x="83.1898" y="22.454"/>
<use xlink:href="#glyph0-34" x="90.4098" y="22.454"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2315.917187 L 383.398438 2315.917187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-4" x="16.4801" y="55.971"/>
<use xlink:href="#glyph0-10" x="21.4801" y="55.971"/>
<use xlink:href="#glyph0-13" x="95.36636" y="22.454"/>
<use xlink:href="#glyph0-22" x="100.36636" y="22.454"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="16.4801" y="6.9112"/>
<use xlink:href="#glyph0-10" x="21.4801" y="6.9112"/>
<use xlink:href="#glyph0-35" x="109.20347" y="22.454"/>
<use xlink:href="#glyph0-33" x="114.75347" y="22.454"/>
<use xlink:href="#glyph0-36" x="121.97347" y="22.454"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 451.932812 L 373.515625 451.932812 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 550.01875 L 373.515625 550.01875 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 648.14375 L 373.515625 648.14375 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 746.229687 L 373.515625 746.229687 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 942.440625 L 373.515625 942.440625 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1040.526562 L 373.515625 1040.526562 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1138.729687 L 373.515625 1138.729687 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1236.854687 L 373.515625 1236.854687 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1433.026562 L 373.515625 1433.026562 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1531.1125 L 373.515625 1531.1125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1629.2375 L 373.515625 1629.2375 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1727.323437 L 373.515625 1727.323437 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 1923.534375 L 373.515625 1923.534375 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2021.620312 L 373.515625 2021.620312 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2119.745312 L 373.515625 2119.745312 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2217.83125 L 373.515625 2217.83125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2414.042187 L 373.515625 2414.042187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2512.128125 L 373.515625 2512.128125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2610.33125 L 373.515625 2610.33125 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 349.414062 2708.417187 L 373.515625 2708.417187 " transform="matrix(0.1,0,0,-0.1,0,284.08)"/>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,31.369019%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1876.210938 2241.235938 L 2029.296875 2241.235938 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 197.757812 3.816406 C 197.757812 2.449219 196.648438 1.34375 195.28125 1.34375 C 193.914062 1.34375 192.804688 2.449219 192.804688 3.816406 C 192.804688 5.183594 193.914062 6.292969 195.28125 6.292969 C 196.648438 6.292969 197.757812 5.183594 197.757812 3.816406 "/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-1" x="7.97461" y="183.447"/>
<use xlink:href="#glyph3-2" x="7.97461" y="176.367"/>
<use xlink:href="#glyph3-3" x="7.97461" y="171.927"/>
<use xlink:href="#glyph3-4" x="7.97461" y="166.377"/>
<use xlink:href="#glyph3-5" x="7.97461" y="160.827"/>
<use xlink:href="#glyph3-3" x="7.97461" y="158.057"/>
<use xlink:href="#glyph3-6" x="7.97461" y="152.507"/>
<use xlink:href="#glyph0-37" x="208.03" y="7.301"/>
<use xlink:href="#glyph0-17" x="215.87" y="7.301"/>
<use xlink:href="#glyph0-15" x="219.78" y="7.301"/>
<use xlink:href="#glyph0-15" x="224.22" y="7.301"/>
<use xlink:href="#glyph0-22" x="228.66" y="7.301"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-7" x="7.97461" y="144.28841"/>
<use xlink:href="#glyph3-8" x="7.97461" y="140.34841"/>
<use xlink:href="#glyph3-9" x="7.97461" y="136.46841"/>
<use xlink:href="#glyph3-2" x="7.97461" y="132.55841"/>
<use xlink:href="#glyph3-7" x="7.97461" y="128.11841"/>
<use xlink:href="#glyph3-7" x="7.97461" y="124.17841"/>
<use xlink:href="#glyph0-35" x="237.46125" y="7.301"/>
<use xlink:href="#glyph0-33" x="243.01125" y="7.301"/>
<use xlink:href="#glyph0-36" x="250.23125" y="7.301"/>
</g>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,94.898987%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1876.210938 2076.939063 L 2029.296875 2076.939063 " transform="matrix(0.1,0,0,-0.1,0,227.94)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 198.828125 22.496094 L 195.28125 16.351562 L 191.730469 22.496094 "/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph4-1" x="7.97461" y="116.974"/>
<use xlink:href="#glyph0-38" x="208.03" y="23.731"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph4-2" x="7.97461" y="106.22283"/>
<use xlink:href="#glyph0-15" x="214.671797" y="23.731"/>
<use xlink:href="#glyph0-31" x="219.111797" y="23.731"/>
<use xlink:href="#glyph0-31" x="221.881797" y="23.731"/>
<use xlink:href="#glyph0-18" x="224.651797" y="23.731"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-10" x="7.97461" y="94.8451"/>
<use xlink:href="#glyph3-11" x="7.97461" y="92.0751"/>
<use xlink:href="#glyph3-12" x="7.97461" y="82.9151"/>
<use xlink:href="#glyph0-39" x="229.33898" y="23.731"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-13" x="7.97461" y="76.441907"/>
<use xlink:href="#glyph3-14" x="7.97461" y="71.441907"/>
<use xlink:href="#glyph0-35" x="239.855" y="23.731"/>
<use xlink:href="#glyph0-33" x="245.405" y="23.731"/>
<use xlink:href="#glyph0-36" x="252.625" y="23.731"/>
</g>
</g>
</svg>

BIN
M.pdf Vedi File


+ 209
- 247
M.svg Vedi File

@@ -1,5 +1,5 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="441.75pt" height="298.79pt" viewBox="0 0 441.75 298.79" version="1.1">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="300.02pt" height="224.79pt" viewBox="0 0 300.02 224.79" version="1.1">
<defs>
<g>
<symbol overflow="visible" id="glyph0-0">
@@ -181,344 +181,306 @@
</symbol>
</g>
<clipPath id="clip1">
<path d="M 23 11 L 441.75 11 L 441.75 230 L 23 230 Z M 23 11 "/>
<path d="M 23 21 L 300.019531 21 L 300.019531 174 L 23 174 Z M 23 21 "/>
</clipPath>
<clipPath id="clip2">
<path d="M 23 212 L 441.75 212 L 441.75 256 L 23 256 Z M 23 212 "/>
<path d="M 23 150 L 300.019531 150 L 300.019531 190 L 23 190 Z M 23 150 "/>
</clipPath>
<clipPath id="clip3">
<path d="M 23 206 L 441.75 206 L 441.75 245 L 23 245 Z M 23 206 "/>
<path d="M 23 147 L 300.019531 147 L 300.019531 183 L 23 183 Z M 23 147 "/>
</clipPath>
<clipPath id="clip4">
<path d="M 291 288 L 303 288 L 303 298.789062 L 291 298.789062 Z M 291 288 "/>
<path d="M 220 214 L 233 214 L 233 224.789062 L 220 224.789062 Z M 220 214 "/>
</clipPath>
</defs>
<g id="surface1">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 399.21875 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 796.132812 353.8375 L 796.132812 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1192.929688 353.8375 L 1192.929688 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1589.804688 353.8375 L 1589.804688 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1986.601562 353.8375 L 1986.601562 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2383.515625 353.8375 L 2383.515625 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2780.3125 353.8375 L 2780.3125 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3177.226562 353.8375 L 3177.226562 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3574.023438 353.8375 L 3574.023438 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3970.9375 353.8375 L 3970.9375 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4367.734375 353.8375 L 4367.734375 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 4367.734375 353.8375 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 456.025 L 4367.734375 456.025 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 558.251562 L 4367.734375 558.251562 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 762.626562 L 4367.734375 762.626562 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 864.853125 L 4367.734375 864.853125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 967.040625 L 4367.734375 967.040625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1069.228125 L 4367.734375 1069.228125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1273.642187 L 4367.734375 1273.642187 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1375.7125 L 4367.734375 1375.7125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1477.939062 L 4367.734375 1477.939062 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1580.126562 L 4367.734375 1580.126562 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1784.540625 L 4367.734375 1784.540625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1886.728125 L 4367.734375 1886.728125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1988.915625 L 4367.734375 1988.915625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2091.142187 L 4367.734375 2091.142187 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2295.55625 L 4367.734375 2295.55625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2397.74375 L 4367.734375 2397.74375 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2499.93125 L 4367.734375 2499.93125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2602.11875 L 4367.734375 2602.11875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2806.532812 L 4367.734375 2806.532812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 660.439062 L 4367.734375 660.439062 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1171.415625 L 4367.734375 1171.415625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1682.353125 L 4367.734375 1682.353125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2193.329687 L 4367.734375 2193.329687 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2704.345312 L 4367.734375 2704.345312 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:17.0079;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-dasharray:34;stroke-miterlimit:10;" d="M 399.21875 912.548437 L 4367.734375 912.548437 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 399.21875 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 654.335938 353.8375 L 654.335938 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 909.414062 353.8375 L 909.414062 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1164.609375 353.8375 L 1164.609375 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1419.726562 353.8375 L 1419.726562 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1674.804688 353.8375 L 1674.804688 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1929.921875 353.8375 L 1929.921875 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2185.039062 353.8375 L 2185.039062 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2440.117188 353.8375 L 2440.117188 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2695.3125 353.8375 L 2695.3125 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2950.429688 353.8375 L 2950.429688 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 2950.429688 353.8375 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 485.24375 L 2950.429688 485.24375 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 616.65 L 2950.429688 616.65 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 748.017188 L 2950.429688 748.017188 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1010.829688 L 2950.429688 1010.829688 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1142.235938 L 2950.429688 1142.235938 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1273.642188 L 2950.429688 1273.642188 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1404.93125 L 2950.429688 1404.93125 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1667.74375 L 2950.429688 1667.74375 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1799.110938 L 2950.429688 1799.110938 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1930.55625 L 2950.429688 1930.55625 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 879.423438 L 2950.429688 879.423438 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1536.3375 L 2950.429688 1536.3375 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:17.0079;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-dasharray:34;stroke-miterlimit:10;" d="M 399.21875 713.017188 L 2950.429688 713.017188 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g clip-path="url(#clip1)" clip-rule="nonzero">
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,67.83905%,93.728638%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 858.134375 L 796.132812 1144.61875 L 1192.929688 1378.915625 L 1589.804688 1636.415625 L 1986.601562 1891.728125 L 2383.515625 2065.829687 L 2780.3125 2264.93125 L 3177.226562 2444.735937 L 3574.023438 2571.845312 L 3970.9375 2672.548437 L 4367.734375 2714.032812 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 37.671875 215.226562 L 42.171875 215.226562 L 42.171875 210.726562 L 37.671875 210.726562 Z M 37.671875 215.226562 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 77.363281 186.578125 L 81.863281 186.578125 L 81.863281 182.078125 L 77.363281 182.078125 Z M 77.363281 186.578125 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 117.042969 163.148438 L 121.542969 163.148438 L 121.542969 158.648438 L 117.042969 158.648438 Z M 117.042969 163.148438 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 156.730469 137.398438 L 161.230469 137.398438 L 161.230469 132.898438 L 156.730469 132.898438 Z M 156.730469 137.398438 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 196.410156 111.867188 L 200.910156 111.867188 L 200.910156 107.367188 L 196.410156 107.367188 Z M 196.410156 111.867188 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 236.101562 94.457031 L 240.601562 94.457031 L 240.601562 89.957031 L 236.101562 89.957031 Z M 236.101562 94.457031 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 275.78125 74.546875 L 280.28125 74.546875 L 280.28125 70.046875 L 275.78125 70.046875 Z M 275.78125 74.546875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 315.472656 56.566406 L 319.972656 56.566406 L 319.972656 52.066406 L 315.472656 52.066406 Z M 315.472656 56.566406 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 355.152344 43.855469 L 359.652344 43.855469 L 359.652344 39.355469 L 355.152344 39.355469 Z M 355.152344 43.855469 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 394.84375 33.785156 L 399.34375 33.785156 L 399.34375 29.285156 L 394.84375 29.285156 Z M 394.84375 33.785156 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 434.523438 29.636719 L 439.023438 29.636719 L 439.023438 25.136719 L 434.523438 25.136719 Z M 434.523438 29.636719 "/>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,67.83905%,93.728638%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 677.235938 L 654.335938 862.548438 L 909.414062 1012.821875 L 1164.609375 1178.134375 L 1419.726562 1341.845313 L 1674.804688 1454.423438 L 1929.921875 1582.43125 L 2185.039062 1697.43125 L 2440.117188 1779.735938 L 2695.3125 1843.720313 L 2950.429688 1871.728125 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 37.671875 159.316406 L 42.171875 159.316406 L 42.171875 154.816406 L 37.671875 154.816406 Z M 37.671875 159.316406 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 63.183594 140.785156 L 67.683594 140.785156 L 67.683594 136.285156 L 63.183594 136.285156 Z M 63.183594 140.785156 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 88.691406 125.757812 L 93.191406 125.757812 L 93.191406 121.257812 L 88.691406 121.257812 Z M 88.691406 125.757812 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 114.210938 109.226562 L 118.710938 109.226562 L 118.710938 104.726562 L 114.210938 104.726562 Z M 114.210938 109.226562 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 139.722656 92.855469 L 144.222656 92.855469 L 144.222656 88.355469 L 139.722656 88.355469 Z M 139.722656 92.855469 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 165.230469 81.597656 L 169.730469 81.597656 L 169.730469 77.097656 L 165.230469 77.097656 Z M 165.230469 81.597656 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 190.742188 68.796875 L 195.242188 68.796875 L 195.242188 64.296875 L 190.742188 64.296875 Z M 190.742188 68.796875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 216.253906 57.296875 L 220.753906 57.296875 L 220.753906 52.796875 L 216.253906 52.796875 Z M 216.253906 57.296875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 241.761719 49.066406 L 246.261719 49.066406 L 246.261719 44.566406 L 241.761719 44.566406 Z M 241.761719 49.066406 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 267.28125 42.667969 L 271.78125 42.667969 L 271.78125 38.167969 L 267.28125 38.167969 Z M 267.28125 42.667969 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 292.792969 39.867188 L 297.292969 39.867188 L 297.292969 35.367188 L 292.792969 35.367188 Z M 292.792969 39.867188 "/>
<g clip-path="url(#clip2)" clip-rule="nonzero">
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,31.369019%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 703.446875 L 796.132812 702.548437 L 1192.929688 698.915625 L 1589.804688 692.626562 L 1986.601562 677.548437 L 2383.515625 657.43125 L 2780.3125 633.251562 L 3177.226562 610.439062 L 3574.023438 595.829687 L 3970.9375 594.032812 L 4367.734375 596.728125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 42.398438 228.445312 C 42.398438 227.078125 41.289062 225.972656 39.921875 225.972656 C 38.554688 225.972656 37.445312 227.078125 37.445312 228.445312 C 37.445312 229.8125 38.554688 230.921875 39.921875 230.921875 C 41.289062 230.921875 42.398438 229.8125 42.398438 228.445312 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 82.085938 228.535156 C 82.085938 227.167969 80.980469 226.0625 79.613281 226.0625 C 78.246094 226.0625 77.136719 227.167969 77.136719 228.535156 C 77.136719 229.902344 78.246094 231.011719 79.613281 231.011719 C 80.980469 231.011719 82.085938 229.902344 82.085938 228.535156 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 121.765625 228.898438 C 121.765625 227.53125 120.660156 226.421875 119.292969 226.421875 C 117.925781 226.421875 116.816406 227.53125 116.816406 228.898438 C 116.816406 230.261719 117.925781 231.371094 119.292969 231.371094 C 120.660156 231.371094 121.765625 230.261719 121.765625 228.898438 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 161.457031 229.527344 C 161.457031 228.160156 160.347656 227.050781 158.980469 227.050781 C 157.613281 227.050781 156.507812 228.160156 156.507812 229.527344 C 156.507812 230.894531 157.613281 232 158.980469 232 C 160.347656 232 161.457031 230.894531 161.457031 229.527344 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 201.136719 231.035156 C 201.136719 229.667969 200.027344 228.5625 198.660156 228.5625 C 197.296875 228.5625 196.1875 229.667969 196.1875 231.035156 C 196.1875 232.402344 197.296875 233.511719 198.660156 233.511719 C 200.027344 233.511719 201.136719 232.402344 201.136719 231.035156 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 240.828125 233.046875 C 240.828125 231.679688 239.71875 230.570312 238.351562 230.570312 C 236.984375 230.570312 235.878906 231.679688 235.878906 233.046875 C 235.878906 234.414062 236.984375 235.523438 238.351562 235.523438 C 239.71875 235.523438 240.828125 234.414062 240.828125 233.046875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 280.507812 235.464844 C 280.507812 234.101562 279.398438 232.992188 278.03125 232.992188 C 276.664062 232.992188 275.558594 234.101562 275.558594 235.464844 C 275.558594 236.832031 276.664062 237.941406 278.03125 237.941406 C 279.398438 237.941406 280.507812 236.832031 280.507812 235.464844 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 320.195312 237.746094 C 320.195312 236.378906 319.089844 235.273438 317.722656 235.273438 C 316.355469 235.273438 315.246094 236.378906 315.246094 237.746094 C 315.246094 239.113281 316.355469 240.222656 317.722656 240.222656 C 319.089844 240.222656 320.195312 239.113281 320.195312 237.746094 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 359.878906 239.207031 C 359.878906 237.839844 358.769531 236.730469 357.402344 236.730469 C 356.035156 236.730469 354.925781 237.839844 354.925781 239.207031 C 354.925781 240.574219 356.035156 241.679688 357.402344 241.679688 C 358.769531 241.679688 359.878906 240.574219 359.878906 239.207031 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 399.566406 239.386719 C 399.566406 238.019531 398.460938 236.910156 397.09375 236.910156 C 395.726562 236.910156 394.617188 238.019531 394.617188 239.386719 C 394.617188 240.753906 395.726562 241.863281 397.09375 241.863281 C 398.460938 241.863281 399.566406 240.753906 399.566406 239.386719 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 439.246094 239.117188 C 439.246094 237.75 438.140625 236.640625 436.773438 236.640625 C 435.40625 236.640625 434.296875 237.75 434.296875 239.117188 C 434.296875 240.484375 435.40625 241.589844 436.773438 241.589844 C 438.140625 241.589844 439.246094 240.484375 439.246094 239.117188 "/>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,31.369019%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 578.720313 L 654.335938 577.040625 L 909.414062 574.93125 L 1164.609375 571.3375 L 1419.726562 561.923438 L 1674.804688 548.8375 L 1929.921875 533.720313 L 2185.039062 517.353125 L 2440.117188 509.61875 L 2695.3125 508.525 L 2950.429688 510.829688 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 42.398438 166.917969 C 42.398438 165.550781 41.289062 164.441406 39.921875 164.441406 C 38.554688 164.441406 37.445312 165.550781 37.445312 166.917969 C 37.445312 168.285156 38.554688 169.390625 39.921875 169.390625 C 41.289062 169.390625 42.398438 168.285156 42.398438 166.917969 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 67.90625 167.085938 C 67.90625 165.71875 66.796875 164.613281 65.433594 164.613281 C 64.066406 164.613281 62.957031 165.71875 62.957031 167.085938 C 62.957031 168.453125 64.066406 169.5625 65.433594 169.5625 C 66.796875 169.5625 67.90625 168.453125 67.90625 167.085938 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 93.417969 167.296875 C 93.417969 165.929688 92.308594 164.820312 90.941406 164.820312 C 89.574219 164.820312 88.46875 165.929688 88.46875 167.296875 C 88.46875 168.664062 89.574219 169.773438 90.941406 169.773438 C 92.308594 169.773438 93.417969 168.664062 93.417969 167.296875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 118.9375 167.65625 C 118.9375 166.289062 117.828125 165.179688 116.460938 165.179688 C 115.09375 165.179688 113.988281 166.289062 113.988281 167.65625 C 113.988281 169.023438 115.09375 170.132812 116.460938 170.132812 C 117.828125 170.132812 118.9375 169.023438 118.9375 167.65625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 144.445312 168.597656 C 144.445312 167.230469 143.339844 166.121094 141.972656 166.121094 C 140.605469 166.121094 139.496094 167.230469 139.496094 168.597656 C 139.496094 169.964844 140.605469 171.070312 141.972656 171.070312 C 143.339844 171.070312 144.445312 169.964844 144.445312 168.597656 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 169.957031 169.90625 C 169.957031 168.539062 168.847656 167.429688 167.480469 167.429688 C 166.113281 167.429688 165.007812 168.539062 165.007812 169.90625 C 165.007812 171.273438 166.113281 172.382812 167.480469 172.382812 C 168.847656 172.382812 169.957031 171.273438 169.957031 169.90625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 195.46875 171.417969 C 195.46875 170.050781 194.359375 168.941406 192.992188 168.941406 C 191.625 168.941406 190.515625 170.050781 190.515625 171.417969 C 190.515625 172.785156 191.625 173.890625 192.992188 173.890625 C 194.359375 173.890625 195.46875 172.785156 195.46875 171.417969 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 220.976562 173.054688 C 220.976562 171.691406 219.867188 170.582031 218.503906 170.582031 C 217.136719 170.582031 216.027344 171.691406 216.027344 173.054688 C 216.027344 174.421875 217.136719 175.53125 218.503906 175.53125 C 219.867188 175.53125 220.976562 174.421875 220.976562 173.054688 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 246.488281 173.828125 C 246.488281 172.460938 245.378906 171.351562 244.011719 171.351562 C 242.644531 171.351562 241.535156 172.460938 241.535156 173.828125 C 241.535156 175.195312 242.644531 176.300781 244.011719 176.300781 C 245.378906 176.300781 246.488281 175.195312 246.488281 173.828125 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 272.007812 173.9375 C 272.007812 172.570312 270.898438 171.460938 269.53125 171.460938 C 268.164062 171.460938 267.058594 172.570312 267.058594 173.9375 C 267.058594 175.304688 268.164062 176.410156 269.53125 176.410156 C 270.898438 176.410156 272.007812 175.304688 272.007812 173.9375 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 297.515625 173.707031 C 297.515625 172.339844 296.410156 171.230469 295.042969 171.230469 C 293.675781 171.230469 292.566406 172.339844 292.566406 173.707031 C 292.566406 175.074219 293.675781 176.179688 295.042969 176.179688 C 296.410156 176.179688 297.515625 175.074219 297.515625 173.707031 "/>
<g clip-path="url(#clip3)" clip-rule="nonzero">
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,94.898987%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 707.353125 L 796.132812 708.8375 L 1192.929688 709.228125 L 1589.804688 710.517187 L 1986.601562 711.415625 L 2383.515625 713.720312 L 2780.3125 715.634375 L 3177.226562 720.829687 L 3574.023438 729.228125 L 3970.9375 742.353125 L 4367.734375 761.220312 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,94.898987%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 581.142188 L 654.335938 581.728125 L 909.414062 582.353125 L 1164.609375 582.939063 L 1419.726562 583.720313 L 1674.804688 585.126563 L 1929.921875 587.040625 L 2185.039062 589.93125 L 2440.117188 595.048438 L 2695.3125 603.642188 L 2950.429688 615.517188 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 43.472656 230.304688 L 39.921875 224.160156 L 36.371094 230.304688 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 83.160156 230.15625 L 79.613281 224.007812 L 76.0625 230.15625 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 122.839844 230.117188 L 119.292969 223.96875 L 115.742188 230.117188 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 162.53125 229.988281 L 158.980469 223.839844 L 155.433594 229.988281 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 202.210938 229.898438 L 198.660156 223.75 L 195.113281 229.898438 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 241.902344 229.667969 L 238.351562 223.519531 L 234.804688 229.667969 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 281.582031 229.476562 L 278.03125 223.328125 L 274.484375 229.476562 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 321.269531 228.957031 L 317.722656 222.808594 L 314.171875 228.957031 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 360.949219 228.117188 L 357.402344 221.96875 L 353.851562 228.117188 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 400.640625 226.804688 L 397.09375 220.660156 L 393.542969 226.804688 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 440.320312 224.917969 L 436.773438 218.769531 L 433.222656 224.917969 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 432.34375 263.40625 L 431.230469 265.707031 L 436.773438 263.40625 L 431.230469 261.105469 Z M 432.34375 263.40625 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 4323.4375 353.8375 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 399.21875 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 43.472656 168.925781 L 39.921875 162.78125 L 36.371094 168.925781 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 68.980469 168.867188 L 65.433594 162.71875 L 61.882812 168.867188 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 94.492188 168.804688 L 90.941406 162.660156 L 87.394531 168.804688 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 120.011719 168.746094 L 116.460938 162.601562 L 112.914062 168.746094 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 145.519531 168.667969 L 141.972656 162.519531 L 138.421875 168.667969 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 171.03125 168.527344 L 167.480469 162.378906 L 163.933594 168.527344 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 196.539062 168.335938 L 192.992188 162.191406 L 189.441406 168.335938 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 222.050781 168.046875 L 218.503906 161.898438 L 214.953125 168.046875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 247.5625 167.535156 L 244.011719 161.390625 L 240.464844 167.535156 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 273.082031 166.675781 L 269.53125 160.53125 L 265.984375 166.675781 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 298.589844 165.488281 L 295.042969 159.339844 L 291.492188 165.488281 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 290.601562 189.40625 L 289.492188 191.707031 L 295.042969 189.40625 L 289.492188 187.105469 Z M 290.601562 189.40625 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 2906.015625 353.8375 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 399.21875 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="37.4312" y="278.8212"/>
<use xlink:href="#glyph0-1" x="37.4312" y="204.8212"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 796.132812 353.8375 L 796.132812 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 654.335938 353.8375 L 654.335938 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="77.1211" y="278.8212"/>
<use xlink:href="#glyph0-2" x="62.9414" y="204.8212"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1192.929688 353.8375 L 1192.929688 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 909.414062 353.8375 L 909.414062 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="116.801" y="278.8212"/>
<use xlink:href="#glyph0-3" x="88.4512" y="204.8212"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1589.804688 353.8375 L 1589.804688 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1164.609375 353.8375 L 1164.609375 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-4" x="156.491" y="278.8212"/>
<use xlink:href="#glyph0-4" x="113.971" y="204.8212"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1986.601562 353.8375 L 1986.601562 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1419.726562 353.8375 L 1419.726562 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="196.171" y="278.8212"/>
<use xlink:href="#glyph0-5" x="139.481" y="204.8212"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2383.515625 353.8375 L 2383.515625 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1674.804688 353.8375 L 1674.804688 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-6" x="235.861" y="278.8212"/>
<use xlink:href="#glyph0-6" x="164.991" y="204.8212"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2780.3125 353.8375 L 2780.3125 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1929.921875 353.8375 L 1929.921875 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-7" x="275.541" y="278.8212"/>
<use xlink:href="#glyph0-7" x="190.501" y="204.8212"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3177.226562 353.8375 L 3177.226562 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2185.039062 353.8375 L 2185.039062 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-8" x="315.231" y="278.8212"/>
<use xlink:href="#glyph0-8" x="216.011" y="204.8212"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3574.023438 353.8375 L 3574.023438 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2440.117188 353.8375 L 2440.117188 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-9" x="354.911" y="278.8212"/>
<use xlink:href="#glyph0-9" x="241.521" y="204.8212"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3970.9375 353.8375 L 3970.9375 387.821875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2695.3125 353.8375 L 2695.3125 387.821875 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="392.111" y="278.8212"/>
<use xlink:href="#glyph0-10" x="397.111" y="278.8212"/>
<use xlink:href="#glyph0-1" x="264.551" y="204.8212"/>
<use xlink:href="#glyph0-10" x="269.551" y="204.8212"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="431.7911" y="278.8212"/>
<use xlink:href="#glyph0-1" x="436.7911" y="278.8212"/>
<use xlink:href="#glyph0-1" x="290.0612" y="204.8212"/>
<use xlink:href="#glyph0-1" x="295.0612" y="204.8212"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-11" x="172.641" y="295.8005"/>
<use xlink:href="#glyph0-12" x="180.271" y="295.8005"/>
<use xlink:href="#glyph0-13" x="183.041" y="295.8005"/>
<use xlink:href="#glyph0-14" x="188.041" y="295.8005"/>
<use xlink:href="#glyph0-15" x="196.371" y="295.8005"/>
<use xlink:href="#glyph0-16" x="200.811" y="295.8005"/>
<use xlink:href="#glyph0-15" x="204.691" y="295.8005"/>
<use xlink:href="#glyph0-17" x="209.131" y="295.8005"/>
<use xlink:href="#glyph0-11" x="101.771" y="221.8005"/>
<use xlink:href="#glyph0-12" x="109.401" y="221.8005"/>
<use xlink:href="#glyph0-13" x="112.171" y="221.8005"/>
<use xlink:href="#glyph0-14" x="117.171" y="221.8005"/>
<use xlink:href="#glyph0-15" x="125.501" y="221.8005"/>
<use xlink:href="#glyph0-16" x="129.941" y="221.8005"/>
<use xlink:href="#glyph0-15" x="133.821" y="221.8005"/>
<use xlink:href="#glyph0-17" x="138.261" y="221.8005"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-18" x="216.25506" y="295.8005"/>
<use xlink:href="#glyph0-19" x="221.25506" y="295.8005"/>
<use xlink:href="#glyph0-18" x="145.38545" y="221.8005"/>
<use xlink:href="#glyph0-19" x="150.38545" y="221.8005"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-16" x="227.60154" y="295.8005"/>
<use xlink:href="#glyph0-20" x="231.48154" y="295.8005"/>
<use xlink:href="#glyph0-15" x="237.03154" y="295.8005"/>
<use xlink:href="#glyph0-16" x="156.73193" y="221.8005"/>
<use xlink:href="#glyph0-20" x="160.61193" y="221.8005"/>
<use xlink:href="#glyph0-15" x="166.16193" y="221.8005"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-21" x="244.75936" y="295.8005"/>
<use xlink:href="#glyph0-17" x="250.30936" y="295.8005"/>
<use xlink:href="#glyph0-13" x="254.21936" y="295.8005"/>
<use xlink:href="#glyph0-22" x="259.21936" y="295.8005"/>
<use xlink:href="#glyph0-23" x="264.76936" y="295.8005"/>
<use xlink:href="#glyph0-21" x="173.88975" y="221.8005"/>
<use xlink:href="#glyph0-17" x="179.43975" y="221.8005"/>
<use xlink:href="#glyph0-13" x="183.34975" y="221.8005"/>
<use xlink:href="#glyph0-22" x="188.34975" y="221.8005"/>
<use xlink:href="#glyph0-23" x="193.89975" y="221.8005"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-20" x="268.863657" y="295.8005"/>
<use xlink:href="#glyph0-20" x="197.994047" y="221.8005"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph1-1" x="277.719" y="295.8005"/>
<use xlink:href="#glyph1-1" x="206.85" y="221.8005"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph2-1" x="282.90455" y="297.29503"/>
<use xlink:href="#glyph2-1" x="212.03555" y="223.29503"/>
</g>
<g clip-path="url(#clip4)" clip-rule="nonzero">
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-24" x="290.22721" y="295.8005"/>
<use xlink:href="#glyph0-12" x="292.99721" y="295.8005"/>
<use xlink:href="#glyph0-22" x="295.76721" y="295.8005"/>
<use xlink:href="#glyph0-25" x="301.31721" y="295.8005"/>
<use xlink:href="#glyph0-24" x="219.35821" y="221.8005"/>
<use xlink:href="#glyph0-12" x="222.12821" y="221.8005"/>
<use xlink:href="#glyph0-22" x="224.89821" y="221.8005"/>
<use xlink:href="#glyph0-25" x="230.44821" y="221.8005"/>
</g>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 39.921875 22.578125 L 42.222656 23.6875 L 39.921875 18.136719 L 37.621094 23.6875 Z M 39.921875 22.578125 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 399.21875 2762.11875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 660.439062 L 433.203125 660.439062 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 39.921875 36.167969 L 42.222656 37.277344 L 39.921875 31.734375 L 37.621094 37.277344 Z M 39.921875 36.167969 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 399.21875 1886.220313 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 879.423438 L 433.203125 879.423438 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-7" x="21.4613" y="236.231"/>
<use xlink:href="#glyph0-5" x="26.4613" y="236.231"/>
<use xlink:href="#glyph0-1" x="16.4812" y="140.331"/>
<use xlink:href="#glyph0-10" x="21.4812" y="140.331"/>
<use xlink:href="#glyph0-10" x="26.4812" y="140.331"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1171.415625 L 433.203125 1171.415625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1536.3375 L 433.203125 1536.3375 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="16.4812" y="185.131"/>
<use xlink:href="#glyph0-10" x="21.4812" y="185.131"/>
<use xlink:href="#glyph0-10" x="26.4812" y="185.131"/>
<use xlink:href="#glyph0-1" x="16.4812" y="74.641"/>
<use xlink:href="#glyph0-5" x="21.4812" y="74.641"/>
<use xlink:href="#glyph0-10" x="26.4812" y="74.641"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1682.353125 L 433.203125 1682.353125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 423.320312 353.8375 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 485.24375 L 423.320312 485.24375 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 616.65 L 423.320312 616.65 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 748.017188 L 423.320312 748.017188 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1010.829688 L 423.320312 1010.829688 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1142.235938 L 423.320312 1142.235938 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1273.642188 L 423.320312 1273.642188 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1404.93125 L 423.320312 1404.93125 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1667.74375 L 423.320312 1667.74375 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1799.110938 L 423.320312 1799.110938 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="16.4812" y="134.041"/>
<use xlink:href="#glyph0-2" x="21.4812" y="134.041"/>
<use xlink:href="#glyph0-5" x="26.4812" y="134.041"/>
<use xlink:href="#glyph3-1" x="7.97617" y="168.9775"/>
<use xlink:href="#glyph3-2" x="7.97617" y="159.8175"/>
<use xlink:href="#glyph3-3" x="7.97617" y="155.3775"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2193.329687 L 433.203125 2193.329687 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="16.4812" y="82.941"/>
<use xlink:href="#glyph0-5" x="21.4812" y="82.941"/>
<use xlink:href="#glyph0-10" x="26.4812" y="82.941"/>
<use xlink:href="#glyph3-4" x="7.97617" y="147.391561"/>
<use xlink:href="#glyph3-5" x="7.97617" y="141.841561"/>
<use xlink:href="#glyph3-6" x="7.97617" y="137.931561"/>
<use xlink:href="#glyph3-7" x="7.97617" y="132.931561"/>
<use xlink:href="#glyph3-2" x="7.97617" y="127.381561"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2704.345312 L 433.203125 2704.345312 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="16.4812" y="31.841"/>
<use xlink:href="#glyph0-7" x="21.4812" y="31.841"/>
<use xlink:href="#glyph0-5" x="26.4812" y="31.841"/>
<use xlink:href="#glyph3-8" x="7.97617" y="119.690001"/>
<use xlink:href="#glyph3-9" x="7.97617" y="115.750001"/>
<use xlink:href="#glyph3-5" x="7.97617" y="111.870001"/>
<use xlink:href="#glyph3-2" x="7.97617" y="107.960001"/>
<use xlink:href="#glyph3-8" x="7.97617" y="103.520001"/>
<use xlink:href="#glyph3-8" x="7.97617" y="99.580001"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 353.8375 L 423.320312 353.8375 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 456.025 L 423.320312 456.025 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 558.251562 L 423.320312 558.251562 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 762.626562 L 423.320312 762.626562 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 864.853125 L 423.320312 864.853125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 967.040625 L 423.320312 967.040625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1069.228125 L 423.320312 1069.228125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1273.642187 L 423.320312 1273.642187 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1375.7125 L 423.320312 1375.7125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1477.939062 L 423.320312 1477.939062 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1580.126562 L 423.320312 1580.126562 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1784.540625 L 423.320312 1784.540625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1886.728125 L 423.320312 1886.728125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 1988.915625 L 423.320312 1988.915625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2091.142187 L 423.320312 2091.142187 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2295.55625 L 423.320312 2295.55625 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2397.74375 L 423.320312 2397.74375 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2499.93125 L 423.320312 2499.93125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 399.21875 2602.11875 L 423.320312 2602.11875 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-1" x="7.97617" y="199.1873"/>
<use xlink:href="#glyph3-2" x="7.97617" y="190.0273"/>
<use xlink:href="#glyph3-3" x="7.97617" y="185.5873"/>
<use xlink:href="#glyph4-1" x="7.97617" y="92.3755"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-4" x="7.97617" y="177.601758"/>
<use xlink:href="#glyph3-5" x="7.97617" y="172.051758"/>
<use xlink:href="#glyph3-6" x="7.97617" y="168.141758"/>
<use xlink:href="#glyph3-7" x="7.97617" y="163.141758"/>
<use xlink:href="#glyph3-2" x="7.97617" y="157.591758"/>
<use xlink:href="#glyph3-10" x="7.97617" y="78.3032"/>
<use xlink:href="#glyph3-1" x="7.97617" y="75.5332"/>
<use xlink:href="#glyph3-11" x="7.97617" y="66.3732"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-8" x="7.97617" y="149.899808"/>
<use xlink:href="#glyph3-9" x="7.97617" y="145.959808"/>
<use xlink:href="#glyph3-5" x="7.97617" y="142.079808"/>
<use xlink:href="#glyph3-2" x="7.97617" y="138.169808"/>
<use xlink:href="#glyph3-8" x="7.97617" y="133.729808"/>
<use xlink:href="#glyph3-8" x="7.97617" y="129.789808"/>
<use xlink:href="#glyph3-6" x="7.97617" y="59.899994"/>
<use xlink:href="#glyph3-12" x="7.97617" y="54.899994"/>
</g>
<path style="fill:none;stroke-width:17.0079;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-dasharray:34;stroke-miterlimit:10;" d="M 677.617188 2195.439063 L 830.703125 2195.439063 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph4-1" x="7.97617" y="122.5857"/>
<use xlink:href="#glyph0-26" x="88.1711" y="8.734"/>
<use xlink:href="#glyph0-22" x="91.7811" y="8.734"/>
<use xlink:href="#glyph0-27" x="97.3311" y="8.734"/>
<use xlink:href="#glyph0-22" x="102.8811" y="8.734"/>
<use xlink:href="#glyph0-12" x="108.4311" y="8.734"/>
<use xlink:href="#glyph0-16" x="111.2011" y="8.734"/>
<use xlink:href="#glyph0-15" x="115.0811" y="8.734"/>
<use xlink:href="#glyph0-28" x="119.5211" y="8.734"/>
<use xlink:href="#glyph0-29" x="122.8511" y="8.734"/>
<use xlink:href="#glyph0-12" x="128.4011" y="8.734"/>
<use xlink:href="#glyph0-29" x="131.1711" y="8.734"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-10" x="7.97617" y="108.5134"/>
<use xlink:href="#glyph3-1" x="7.97617" y="105.7434"/>
<use xlink:href="#glyph3-11" x="7.97617" y="96.5834"/>
<use xlink:href="#glyph0-15" x="136.877667" y="8.734"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph3-6" x="7.97617" y="90.109816"/>
<use xlink:href="#glyph3-12" x="7.97617" y="85.109816"/>
<use xlink:href="#glyph0-30" x="144.626107" y="8.734"/>
<use xlink:href="#glyph0-18" x="148.566107" y="8.734"/>
<use xlink:href="#glyph0-31" x="153.566107" y="8.734"/>
<use xlink:href="#glyph0-32" x="156.336107" y="8.734"/>
<use xlink:href="#glyph0-16" x="161.886107" y="8.734"/>
<use xlink:href="#glyph0-12" x="165.766107" y="8.734"/>
<use xlink:href="#glyph0-18" x="168.536107" y="8.734"/>
<use xlink:href="#glyph0-22" x="173.536107" y="8.734"/>
</g>
<path style="fill:none;stroke-width:17.0079;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-dasharray:34;stroke-miterlimit:10;" d="M 525.039062 2935.048437 L 678.125 2935.048437 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,67.83905%,93.728638%);stroke-opacity:1;stroke-miterlimit:10;" d="M 677.617188 2058.2125 L 830.703125 2058.2125 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 73.171875 21.21875 L 77.671875 21.21875 L 77.671875 16.71875 L 73.171875 16.71875 Z M 73.171875 21.21875 "/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-26" x="72.9113" y="8.774"/>
<use xlink:href="#glyph0-22" x="76.5213" y="8.774"/>
<use xlink:href="#glyph0-27" x="82.0713" y="8.774"/>
<use xlink:href="#glyph0-22" x="87.6213" y="8.774"/>
<use xlink:href="#glyph0-12" x="93.1713" y="8.774"/>
<use xlink:href="#glyph0-16" x="95.9413" y="8.774"/>
<use xlink:href="#glyph0-15" x="99.8213" y="8.774"/>
<use xlink:href="#glyph0-28" x="104.2613" y="8.774"/>
<use xlink:href="#glyph0-29" x="107.5913" y="8.774"/>
<use xlink:href="#glyph0-12" x="113.1413" y="8.774"/>
<use xlink:href="#glyph0-29" x="115.9113" y="8.774"/>
<use xlink:href="#glyph0-33" x="88.1711" y="22.454"/>
<use xlink:href="#glyph0-34" x="95.3911" y="22.454"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-15" x="121.617477" y="8.774"/>
<use xlink:href="#glyph0-13" x="100.34766" y="22.454"/>
<use xlink:href="#glyph0-22" x="105.34766" y="22.454"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-30" x="129.366307" y="8.774"/>
<use xlink:href="#glyph0-18" x="133.306307" y="8.774"/>
<use xlink:href="#glyph0-31" x="138.306307" y="8.774"/>
<use xlink:href="#glyph0-32" x="141.076307" y="8.774"/>
<use xlink:href="#glyph0-16" x="146.626307" y="8.774"/>
<use xlink:href="#glyph0-12" x="150.506307" y="8.774"/>
<use xlink:href="#glyph0-18" x="153.276307" y="8.774"/>
<use xlink:href="#glyph0-22" x="158.276307" y="8.774"/>
<use xlink:href="#glyph0-35" x="114.18477" y="22.454"/>
<use xlink:href="#glyph0-33" x="119.73477" y="22.454"/>
<use xlink:href="#glyph0-36" x="126.95477" y="22.454"/>
</g>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,67.83905%,93.728638%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1809.609375 2935.7125 L 1962.734375 2935.7125 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,67.83905%,93.728638%);fill-opacity:1;" d="M 186.371094 7.46875 L 190.871094 7.46875 L 190.871094 2.96875 L 186.371094 2.96875 Z M 186.371094 7.46875 "/>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,31.369019%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1926.015625 2209.735938 L 2079.101562 2209.735938 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 202.738281 3.816406 C 202.738281 2.449219 201.628906 1.34375 200.261719 1.34375 C 198.894531 1.34375 197.785156 2.449219 197.785156 3.816406 C 197.785156 5.183594 198.894531 6.292969 200.261719 6.292969 C 201.628906 6.292969 202.738281 5.183594 202.738281 3.816406 "/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-33" x="201.371" y="8.704"/>
<use xlink:href="#glyph0-34" x="208.591" y="8.704"/>
<use xlink:href="#glyph0-37" x="213.011" y="7.301"/>
<use xlink:href="#glyph0-17" x="220.851" y="7.301"/>
<use xlink:href="#glyph0-15" x="224.761" y="7.301"/>
<use xlink:href="#glyph0-15" x="229.201" y="7.301"/>
<use xlink:href="#glyph0-22" x="233.641" y="7.301"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-13" x="213.547963" y="8.704"/>
<use xlink:href="#glyph0-22" x="218.547963" y="8.704"/>
<use xlink:href="#glyph0-35" x="242.44225" y="7.301"/>
<use xlink:href="#glyph0-33" x="247.99225" y="7.301"/>
<use xlink:href="#glyph0-36" x="255.21225" y="7.301"/>
</g>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,94.898987%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1926.015625 2045.439063 L 2079.101562 2045.439063 " transform="matrix(0.1,0,0,-0.1,0,224.79)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 203.8125 22.496094 L 200.261719 16.351562 L 196.714844 22.496094 "/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-35" x="227.384683" y="8.704"/>
<use xlink:href="#glyph0-33" x="232.934683" y="8.704"/>
<use xlink:href="#glyph0-36" x="240.154683" y="8.704"/>
<use xlink:href="#glyph0-38" x="213.011" y="23.731"/>
</g>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,31.369019%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2635.703125 2949.345312 L 2788.828125 2949.345312 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,31.369019%);fill-opacity:1;" d="M 273.695312 3.855469 C 273.695312 2.488281 272.589844 1.382812 271.222656 1.382812 C 269.855469 1.382812 268.746094 2.488281 268.746094 3.855469 C 268.746094 5.222656 269.855469 6.332031 271.222656 6.332031 C 272.589844 6.332031 273.695312 5.222656 273.695312 3.855469 "/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-37" x="283.981" y="7.341"/>
<use xlink:href="#glyph0-17" x="291.821" y="7.341"/>
<use xlink:href="#glyph0-15" x="295.731" y="7.341"/>
<use xlink:href="#glyph0-15" x="300.171" y="7.341"/>
<use xlink:href="#glyph0-22" x="304.611" y="7.341"/>
<use xlink:href="#glyph0-15" x="219.652797" y="23.731"/>
<use xlink:href="#glyph0-31" x="224.092797" y="23.731"/>
<use xlink:href="#glyph0-31" x="226.862797" y="23.731"/>
<use xlink:href="#glyph0-18" x="229.632797" y="23.731"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-35" x="313.41225" y="7.341"/>
<use xlink:href="#glyph0-33" x="318.96225" y="7.341"/>
<use xlink:href="#glyph0-36" x="326.18225" y="7.341"/>
<use xlink:href="#glyph0-39" x="234.31998" y="23.731"/>
</g>
<path style="fill:none;stroke-width:11.3386;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,94.898987%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3496.015625 2948.525 L 3649.023438 2948.525 " transform="matrix(0.1,0,0,-0.1,0,298.79)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,94.898987%,0%);fill-opacity:1;" d="M 360.800781 6.1875 L 357.253906 0.0390625 L 353.703125 6.1875 "/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-38" x="370.011" y="7.421"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-15" x="376.652797" y="7.421"/>
<use xlink:href="#glyph0-31" x="381.092797" y="7.421"/>
<use xlink:href="#glyph0-31" x="383.862797" y="7.421"/>
<use xlink:href="#glyph0-18" x="386.632797" y="7.421"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-39" x="391.31998" y="7.421"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-35" x="401.836" y="7.421"/>
<use xlink:href="#glyph0-33" x="407.386" y="7.421"/>
<use xlink:href="#glyph0-36" x="414.606" y="7.421"/>
<use xlink:href="#glyph0-35" x="244.836" y="23.731"/>
<use xlink:href="#glyph0-33" x="250.386" y="23.731"/>
<use xlink:href="#glyph0-36" x="257.606" y="23.731"/>
</g>
</g>
</svg>

BIN
acumulada.pdf Vedi File


+ 38
- 0
acumulada.ppl Vedi File

@@ -0,0 +1,38 @@
set preamble "\usepackage{amsmath}"

set width 14*unit(cm)
set size ratio 0.375

set axis x arrow nomirrored
set axis y arrow nomirrored
set nokey

set grid

set terminal pdf

set xrange [0.5:16+0.5]
set xtics 1,1,16

#set output "frecuencia.pdf"
#set ylabel "Frecuencia~$f_i$ [Hz]"
#set ytics 250
#set mytics 50
# plot "modes.dat" u 1:2 w boxes color black fillcolor emerald

#set output "participacion.pdf"
#set yrange [-4:4]
#set ytics 1
#set mytics 0.25
#set ylabel "Factor de participaci\\'on~$\mathcal{L}_i/M_i$ [UA]"
#plot "modes.dat" u 1:6 w boxes color black fillcolor cyan

set output "acumulada.pdf"
set yrange [0:1]
set ytics 0.2
set mytics 0.1

set xlabel "Mode~$i$"

set ylabel "Accumulated mass"
plot "modes.dat" u 1:8 w boxes color black fillcolor melon

+ 452
- 0
acumulada.svg Vedi File

@@ -0,0 +1,452 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="434.29pt" height="184.59pt" viewBox="0 0 434.29 184.59" version="1.1">
<defs>
<g>
<symbol overflow="visible" id="glyph0-0">
<path style="stroke:none;" d=""/>
</symbol>
<symbol overflow="visible" id="glyph0-1">
<path style="stroke:none;" d="M 2.9375 -6.40625 C 2.9375 -6.640625 2.9375 -6.65625 2.703125 -6.65625 C 2.09375 -6.015625 1.203125 -6.015625 0.890625 -6.015625 L 0.890625 -5.703125 C 1.09375 -5.703125 1.6875 -5.703125 2.203125 -5.96875 L 2.203125 -0.796875 C 2.203125 -0.4375 2.171875 -0.3125 1.265625 -0.3125 L 0.953125 -0.3125 L 0.953125 0 C 1.296875 -0.03125 2.171875 -0.03125 2.5625 -0.03125 C 2.96875 -0.03125 3.84375 -0.03125 4.1875 0 L 4.1875 -0.3125 L 3.875 -0.3125 C 2.96875 -0.3125 2.9375 -0.421875 2.9375 -0.796875 Z M 2.9375 -6.40625 "/>
</symbol>
<symbol overflow="visible" id="glyph0-2">
<path style="stroke:none;" d="M 1.265625 -0.765625 L 2.328125 -1.796875 C 3.890625 -3.1875 4.484375 -3.71875 4.484375 -4.71875 C 4.484375 -5.859375 3.59375 -6.65625 2.375 -6.65625 C 1.234375 -6.65625 0.5 -5.734375 0.5 -4.84375 C 0.5 -4.296875 1 -4.296875 1.03125 -4.296875 C 1.203125 -4.296875 1.546875 -4.40625 1.546875 -4.8125 C 1.546875 -5.078125 1.375 -5.34375 1.015625 -5.34375 C 0.9375 -5.34375 0.921875 -5.34375 0.890625 -5.328125 C 1.125 -5.984375 1.65625 -6.34375 2.234375 -6.34375 C 3.15625 -6.34375 3.578125 -5.546875 3.578125 -4.71875 C 3.578125 -3.921875 3.078125 -3.125 2.53125 -2.515625 L 0.609375 -0.375 C 0.5 -0.265625 0.5 -0.234375 0.5 0 L 4.203125 0 L 4.484375 -1.734375 L 4.234375 -1.734375 C 4.1875 -1.4375 4.125 -1 4.015625 -0.84375 C 3.953125 -0.765625 3.296875 -0.765625 3.0625 -0.765625 Z M 1.265625 -0.765625 "/>
</symbol>
<symbol overflow="visible" id="glyph0-3">
<path style="stroke:none;" d="M 2.90625 -3.515625 C 3.71875 -3.796875 4.296875 -4.484375 4.296875 -5.28125 C 4.296875 -6.09375 3.421875 -6.65625 2.453125 -6.65625 C 1.453125 -6.65625 0.6875 -6.0625 0.6875 -5.296875 C 0.6875 -4.96875 0.90625 -4.78125 1.203125 -4.78125 C 1.515625 -4.78125 1.703125 -5 1.703125 -5.296875 C 1.703125 -5.796875 1.234375 -5.796875 1.09375 -5.796875 C 1.40625 -6.28125 2.0625 -6.40625 2.421875 -6.40625 C 2.828125 -6.40625 3.375 -6.1875 3.375 -5.296875 C 3.375 -5.171875 3.359375 -4.59375 3.09375 -4.15625 C 2.796875 -3.671875 2.453125 -3.640625 2.203125 -3.625 C 2.125 -3.625 1.890625 -3.59375 1.8125 -3.59375 C 1.734375 -3.59375 1.671875 -3.578125 1.671875 -3.484375 C 1.671875 -3.375 1.734375 -3.375 1.90625 -3.375 L 2.34375 -3.375 C 3.171875 -3.375 3.546875 -2.6875 3.546875 -1.703125 C 3.546875 -0.34375 2.84375 -0.0625 2.40625 -0.0625 C 1.984375 -0.0625 1.234375 -0.234375 0.875 -0.8125 C 1.234375 -0.765625 1.546875 -0.984375 1.546875 -1.375 C 1.546875 -1.734375 1.265625 -1.9375 0.984375 -1.9375 C 0.734375 -1.9375 0.421875 -1.796875 0.421875 -1.34375 C 0.421875 -0.4375 1.34375 0.21875 2.4375 0.21875 C 3.65625 0.21875 4.5625 -0.6875 4.5625 -1.703125 C 4.5625 -2.53125 3.9375 -3.3125 2.90625 -3.515625 Z M 2.90625 -3.515625 "/>
</symbol>
<symbol overflow="visible" id="glyph0-4">
<path style="stroke:none;" d="M 2.9375 -1.65625 L 2.9375 -0.78125 C 2.9375 -0.421875 2.921875 -0.3125 2.1875 -0.3125 L 1.96875 -0.3125 L 1.96875 0 C 2.375 -0.03125 2.90625 -0.03125 3.3125 -0.03125 C 3.734375 -0.03125 4.265625 -0.03125 4.6875 0 L 4.6875 -0.3125 L 4.46875 -0.3125 C 3.734375 -0.3125 3.703125 -0.421875 3.703125 -0.78125 L 3.703125 -1.65625 L 4.703125 -1.65625 L 4.703125 -1.953125 L 3.703125 -1.953125 L 3.703125 -6.515625 C 3.703125 -6.703125 3.703125 -6.765625 3.546875 -6.765625 C 3.453125 -6.765625 3.4375 -6.765625 3.34375 -6.65625 L 0.28125 -1.953125 L 0.28125 -1.65625 Z M 3 -1.953125 L 0.5625 -1.953125 L 3 -5.6875 Z M 3 -1.953125 "/>
</symbol>
<symbol overflow="visible" id="glyph0-5">
<path style="stroke:none;" d="M 4.484375 -2.015625 C 4.484375 -3.203125 3.671875 -4.203125 2.59375 -4.203125 C 2.109375 -4.203125 1.6875 -4.046875 1.3125 -3.6875 L 1.3125 -5.640625 C 1.515625 -5.578125 1.84375 -5.515625 2.171875 -5.515625 C 3.40625 -5.515625 4.09375 -6.421875 4.09375 -6.546875 C 4.09375 -6.609375 4.0625 -6.65625 4 -6.65625 C 3.984375 -6.65625 3.96875 -6.65625 3.921875 -6.625 C 3.71875 -6.546875 3.234375 -6.34375 2.5625 -6.34375 C 2.15625 -6.34375 1.703125 -6.40625 1.234375 -6.625 C 1.15625 -6.65625 1.125 -6.65625 1.109375 -6.65625 C 1.015625 -6.65625 1.015625 -6.5625 1.015625 -6.40625 L 1.015625 -3.453125 C 1.015625 -3.265625 1.015625 -3.1875 1.15625 -3.1875 C 1.21875 -3.1875 1.234375 -3.21875 1.28125 -3.28125 C 1.390625 -3.4375 1.765625 -3.984375 2.5625 -3.984375 C 3.09375 -3.984375 3.34375 -3.515625 3.421875 -3.34375 C 3.578125 -2.96875 3.59375 -2.578125 3.59375 -2.078125 C 3.59375 -1.734375 3.59375 -1.125 3.359375 -0.703125 C 3.125 -0.3125 2.75 -0.0625 2.296875 -0.0625 C 1.5625 -0.0625 0.984375 -0.59375 0.8125 -1.1875 C 0.84375 -1.171875 0.875 -1.15625 0.984375 -1.15625 C 1.3125 -1.15625 1.484375 -1.40625 1.484375 -1.65625 C 1.484375 -1.890625 1.3125 -2.140625 0.984375 -2.140625 C 0.84375 -2.140625 0.5 -2.0625 0.5 -1.609375 C 0.5 -0.75 1.1875 0.21875 2.3125 0.21875 C 3.46875 0.21875 4.484375 -0.734375 4.484375 -2.015625 Z M 4.484375 -2.015625 "/>
</symbol>
<symbol overflow="visible" id="glyph0-6">
<path style="stroke:none;" d="M 1.3125 -3.28125 L 1.3125 -3.515625 C 1.3125 -6.046875 2.5625 -6.40625 3.0625 -6.40625 C 3.3125 -6.40625 3.734375 -6.34375 3.953125 -6.015625 C 3.796875 -6.015625 3.40625 -6.015625 3.40625 -5.5625 C 3.40625 -5.25 3.640625 -5.09375 3.859375 -5.09375 C 4.015625 -5.09375 4.3125 -5.1875 4.3125 -5.578125 C 4.3125 -6.1875 3.875 -6.65625 3.046875 -6.65625 C 1.765625 -6.65625 0.421875 -5.375 0.421875 -3.15625 C 0.421875 -0.484375 1.578125 0.21875 2.515625 0.21875 C 3.625 0.21875 4.5625 -0.71875 4.5625 -2.046875 C 4.5625 -3.3125 3.6875 -4.265625 2.5625 -4.265625 C 1.890625 -4.265625 1.515625 -3.765625 1.3125 -3.28125 Z M 2.515625 -0.0625 C 1.875 -0.0625 1.578125 -0.65625 1.515625 -0.8125 C 1.34375 -1.28125 1.34375 -2.078125 1.34375 -2.265625 C 1.34375 -3.046875 1.65625 -4.046875 2.5625 -4.046875 C 2.71875 -4.046875 3.1875 -4.046875 3.484375 -3.421875 C 3.671875 -3.046875 3.671875 -2.546875 3.671875 -2.046875 C 3.671875 -1.5625 3.671875 -1.0625 3.5 -0.703125 C 3.203125 -0.109375 2.734375 -0.0625 2.515625 -0.0625 Z M 2.515625 -0.0625 "/>
</symbol>
<symbol overflow="visible" id="glyph0-7">
<path style="stroke:none;" d="M 4.765625 -6.09375 C 4.84375 -6.203125 4.84375 -6.234375 4.84375 -6.4375 L 2.421875 -6.4375 C 1.203125 -6.4375 1.1875 -6.5625 1.140625 -6.765625 L 0.890625 -6.765625 L 0.5625 -4.703125 L 0.8125 -4.703125 C 0.84375 -4.859375 0.9375 -5.484375 1.0625 -5.609375 C 1.125 -5.671875 1.90625 -5.671875 2.046875 -5.671875 L 4.109375 -5.671875 C 4 -5.515625 3.203125 -4.421875 2.984375 -4.09375 C 2.09375 -2.734375 1.765625 -1.34375 1.765625 -0.328125 C 1.765625 -0.234375 1.765625 0.21875 2.21875 0.21875 C 2.6875 0.21875 2.6875 -0.234375 2.6875 -0.328125 L 2.6875 -0.84375 C 2.6875 -1.390625 2.703125 -1.9375 2.796875 -2.484375 C 2.828125 -2.703125 2.96875 -3.5625 3.40625 -4.1875 Z M 4.765625 -6.09375 "/>
</symbol>
<symbol overflow="visible" id="glyph0-8">
<path style="stroke:none;" d="M 1.625 -4.5625 C 1.171875 -4.875 1.125 -5.203125 1.125 -5.375 C 1.125 -5.984375 1.78125 -6.40625 2.484375 -6.40625 C 3.21875 -6.40625 3.859375 -5.890625 3.859375 -5.171875 C 3.859375 -4.59375 3.46875 -4.125 2.875 -3.765625 Z M 3.09375 -3.625 C 3.8125 -3.984375 4.296875 -4.515625 4.296875 -5.171875 C 4.296875 -6.09375 3.40625 -6.65625 2.5 -6.65625 C 1.5 -6.65625 0.6875 -5.921875 0.6875 -4.984375 C 0.6875 -4.8125 0.703125 -4.359375 1.125 -3.890625 C 1.234375 -3.765625 1.609375 -3.515625 1.859375 -3.34375 C 1.28125 -3.0625 0.421875 -2.5 0.421875 -1.515625 C 0.421875 -0.453125 1.4375 0.21875 2.484375 0.21875 C 3.625 0.21875 4.5625 -0.609375 4.5625 -1.6875 C 4.5625 -2.046875 4.453125 -2.484375 4.078125 -2.90625 C 3.890625 -3.125 3.734375 -3.21875 3.09375 -3.625 Z M 2.09375 -3.203125 L 3.3125 -2.421875 C 3.59375 -2.234375 4.0625 -1.9375 4.0625 -1.3125 C 4.0625 -0.578125 3.3125 -0.0625 2.5 -0.0625 C 1.640625 -0.0625 0.921875 -0.6875 0.921875 -1.515625 C 0.921875 -2.09375 1.234375 -2.734375 2.09375 -3.203125 Z M 2.09375 -3.203125 "/>
</symbol>
<symbol overflow="visible" id="glyph0-9">
<path style="stroke:none;" d="M 3.671875 -3.1875 L 3.671875 -2.859375 C 3.671875 -0.515625 2.625 -0.0625 2.046875 -0.0625 C 1.875 -0.0625 1.34375 -0.078125 1.0625 -0.421875 C 1.515625 -0.421875 1.59375 -0.703125 1.59375 -0.875 C 1.59375 -1.1875 1.34375 -1.34375 1.125 -1.34375 C 0.96875 -1.34375 0.671875 -1.25 0.671875 -0.859375 C 0.671875 -0.1875 1.203125 0.21875 2.0625 0.21875 C 3.34375 0.21875 4.5625 -1.140625 4.5625 -3.296875 C 4.5625 -5.984375 3.421875 -6.65625 2.53125 -6.65625 C 1.984375 -6.65625 1.484375 -6.484375 1.0625 -6.03125 C 0.65625 -5.578125 0.421875 -5.15625 0.421875 -4.40625 C 0.421875 -3.15625 1.296875 -2.1875 2.421875 -2.1875 C 3.03125 -2.1875 3.4375 -2.59375 3.671875 -3.1875 Z M 2.4375 -2.40625 C 2.265625 -2.40625 1.8125 -2.40625 1.5 -3.046875 C 1.3125 -3.40625 1.3125 -3.90625 1.3125 -4.40625 C 1.3125 -4.9375 1.3125 -5.40625 1.53125 -5.78125 C 1.796875 -6.28125 2.1875 -6.40625 2.53125 -6.40625 C 2.984375 -6.40625 3.3125 -6.0625 3.484375 -5.625 C 3.609375 -5.296875 3.65625 -4.671875 3.65625 -4.203125 C 3.65625 -3.375 3.3125 -2.40625 2.4375 -2.40625 Z M 2.4375 -2.40625 "/>
</symbol>
<symbol overflow="visible" id="glyph0-10">
<path style="stroke:none;" d="M 4.59375 -3.203125 C 4.59375 -4 4.546875 -4.796875 4.203125 -5.546875 C 3.734375 -6.5 2.921875 -6.65625 2.5 -6.65625 C 1.90625 -6.65625 1.171875 -6.40625 0.765625 -5.46875 C 0.4375 -4.78125 0.390625 -4 0.390625 -3.203125 C 0.390625 -2.453125 0.4375 -1.546875 0.84375 -0.796875 C 1.265625 0.015625 2 0.21875 2.484375 0.21875 C 3.03125 0.21875 3.796875 0.015625 4.234375 -0.9375 C 4.546875 -1.625 4.59375 -2.40625 4.59375 -3.203125 Z M 2.484375 0 C 2.09375 0 1.515625 -0.25 1.328125 -1.203125 C 1.21875 -1.8125 1.21875 -2.734375 1.21875 -3.3125 C 1.21875 -3.953125 1.21875 -4.625 1.296875 -5.15625 C 1.484375 -6.34375 2.234375 -6.4375 2.484375 -6.4375 C 2.8125 -6.4375 3.484375 -6.265625 3.671875 -5.265625 C 3.765625 -4.703125 3.765625 -3.953125 3.765625 -3.3125 C 3.765625 -2.5625 3.765625 -1.890625 3.65625 -1.25 C 3.515625 -0.296875 2.9375 0 2.484375 0 Z M 2.484375 0 "/>
</symbol>
<symbol overflow="visible" id="glyph0-11">
<path style="stroke:none;" d="M 2.40625 -6.609375 C 2.3125 -6.828125 2.296875 -6.828125 2.0625 -6.828125 L 0.375 -6.828125 L 0.375 -6.515625 L 0.609375 -6.515625 C 1.375 -6.515625 1.40625 -6.40625 1.40625 -6.046875 L 1.40625 -1.046875 C 1.40625 -0.78125 1.40625 -0.3125 0.375 -0.3125 L 0.375 0 C 0.71875 -0.015625 1.203125 -0.03125 1.546875 -0.03125 C 1.875 -0.03125 2.359375 -0.015625 2.703125 0 L 2.703125 -0.3125 C 1.6875 -0.3125 1.6875 -0.78125 1.6875 -1.046875 L 1.6875 -6.4375 L 4.09375 -0.21875 C 4.15625 -0.09375 4.203125 0 4.296875 0 C 4.40625 0 4.4375 -0.078125 4.484375 -0.1875 L 6.9375 -6.515625 L 6.953125 -6.515625 L 6.953125 -0.78125 C 6.953125 -0.421875 6.9375 -0.3125 6.15625 -0.3125 L 5.921875 -0.3125 L 5.921875 0 C 6.296875 -0.03125 6.96875 -0.03125 7.359375 -0.03125 C 7.75 -0.03125 8.421875 -0.03125 8.796875 0 L 8.796875 -0.3125 L 8.546875 -0.3125 C 7.78125 -0.3125 7.765625 -0.421875 7.765625 -0.78125 L 7.765625 -6.046875 C 7.765625 -6.40625 7.78125 -6.515625 8.546875 -6.515625 L 8.796875 -6.515625 L 8.796875 -6.828125 L 7.09375 -6.828125 C 6.84375 -6.828125 6.84375 -6.8125 6.765625 -6.640625 L 4.578125 -1.015625 Z M 2.40625 -6.609375 "/>
</symbol>
<symbol overflow="visible" id="glyph0-12">
<path style="stroke:none;" d="M 4.703125 -2.140625 C 4.703125 -3.421875 3.703125 -4.484375 2.5 -4.484375 C 1.25 -4.484375 0.28125 -3.390625 0.28125 -2.140625 C 0.28125 -0.84375 1.3125 0.109375 2.484375 0.109375 C 3.703125 0.109375 4.703125 -0.875 4.703125 -2.140625 Z M 2.5 -0.140625 C 2.0625 -0.140625 1.625 -0.34375 1.359375 -0.8125 C 1.109375 -1.25 1.109375 -1.859375 1.109375 -2.21875 C 1.109375 -2.609375 1.109375 -3.15625 1.34375 -3.59375 C 1.625 -4.046875 2.09375 -4.265625 2.484375 -4.265625 C 2.9375 -4.265625 3.359375 -4.046875 3.625 -3.609375 C 3.875 -3.1875 3.875 -2.59375 3.875 -2.21875 C 3.875 -1.859375 3.875 -1.3125 3.65625 -0.875 C 3.4375 -0.4375 3 -0.140625 2.5 -0.140625 Z M 2.5 -0.140625 "/>
</symbol>
<symbol overflow="visible" id="glyph0-13">
<path style="stroke:none;" d="M 3.796875 -0.546875 L 3.796875 0.109375 L 5.265625 0 L 5.265625 -0.3125 C 4.5625 -0.3125 4.484375 -0.375 4.484375 -0.875 L 4.484375 -6.9375 L 3.046875 -6.828125 L 3.046875 -6.515625 C 3.75 -6.515625 3.828125 -6.453125 3.828125 -5.953125 L 3.828125 -3.796875 C 3.546875 -4.15625 3.109375 -4.421875 2.5625 -4.421875 C 1.390625 -4.421875 0.34375 -3.4375 0.34375 -2.15625 C 0.34375 -0.875 1.3125 0.109375 2.453125 0.109375 C 3.09375 0.109375 3.546875 -0.234375 3.796875 -0.546875 Z M 3.796875 -3.234375 L 3.796875 -1.1875 C 3.796875 -1 3.796875 -0.984375 3.6875 -0.8125 C 3.390625 -0.328125 2.9375 -0.109375 2.515625 -0.109375 C 2.0625 -0.109375 1.703125 -0.375 1.453125 -0.75 C 1.203125 -1.15625 1.171875 -1.734375 1.171875 -2.140625 C 1.171875 -2.515625 1.1875 -3.109375 1.484375 -3.5625 C 1.6875 -3.875 2.0625 -4.203125 2.609375 -4.203125 C 2.953125 -4.203125 3.375 -4.046875 3.6875 -3.59375 C 3.796875 -3.4375 3.796875 -3.40625 3.796875 -3.234375 Z M 3.796875 -3.234375 "/>
</symbol>
<symbol overflow="visible" id="glyph0-14">
<path style="stroke:none;" d="M 1.125 -2.515625 C 1.1875 -4.015625 2.015625 -4.265625 2.359375 -4.265625 C 3.390625 -4.265625 3.484375 -2.90625 3.484375 -2.515625 Z M 1.109375 -2.3125 L 3.90625 -2.3125 C 4.125 -2.3125 4.15625 -2.3125 4.15625 -2.515625 C 4.15625 -3.515625 3.609375 -4.484375 2.359375 -4.484375 C 1.203125 -4.484375 0.28125 -3.453125 0.28125 -2.203125 C 0.28125 -0.859375 1.328125 0.109375 2.484375 0.109375 C 3.703125 0.109375 4.15625 -1 4.15625 -1.1875 C 4.15625 -1.296875 4.0625 -1.3125 4.015625 -1.3125 C 3.9375 -1.3125 3.90625 -1.25 3.890625 -1.171875 C 3.546875 -0.140625 2.640625 -0.140625 2.546875 -0.140625 C 2.046875 -0.140625 1.640625 -0.4375 1.40625 -0.8125 C 1.109375 -1.296875 1.109375 -1.953125 1.109375 -2.3125 Z M 1.109375 -2.3125 "/>
</symbol>
<symbol overflow="visible" id="glyph1-0">
<path style="stroke:none;" d=""/>
</symbol>
<symbol overflow="visible" id="glyph1-1">
<path style="stroke:none;" d="M 2.84375 -6.25 C 2.84375 -6.453125 2.703125 -6.609375 2.46875 -6.609375 C 2.203125 -6.609375 1.9375 -6.34375 1.9375 -6.078125 C 1.9375 -5.890625 2.0625 -5.71875 2.3125 -5.71875 C 2.546875 -5.71875 2.84375 -5.953125 2.84375 -6.25 Z M 2.078125 -2.484375 C 2.203125 -2.78125 2.203125 -2.796875 2.296875 -3.0625 C 2.375 -3.265625 2.4375 -3.40625 2.4375 -3.59375 C 2.4375 -4.046875 2.109375 -4.421875 1.609375 -4.421875 C 0.671875 -4.421875 0.296875 -2.96875 0.296875 -2.875 C 0.296875 -2.78125 0.390625 -2.78125 0.40625 -2.78125 C 0.515625 -2.78125 0.515625 -2.796875 0.5625 -2.953125 C 0.84375 -3.90625 1.234375 -4.203125 1.578125 -4.203125 C 1.65625 -4.203125 1.828125 -4.203125 1.828125 -3.875 C 1.828125 -3.671875 1.765625 -3.453125 1.71875 -3.359375 C 1.640625 -3.09375 1.1875 -1.9375 1.03125 -1.515625 C 0.9375 -1.25 0.796875 -0.921875 0.796875 -0.703125 C 0.796875 -0.234375 1.140625 0.109375 1.625 0.109375 C 2.5625 0.109375 2.9375 -1.34375 2.9375 -1.4375 C 2.9375 -1.53125 2.84375 -1.53125 2.8125 -1.53125 C 2.703125 -1.53125 2.703125 -1.5 2.65625 -1.34375 C 2.484375 -0.71875 2.15625 -0.109375 1.640625 -0.109375 C 1.46875 -0.109375 1.40625 -0.203125 1.40625 -0.4375 C 1.40625 -0.6875 1.453125 -0.828125 1.6875 -1.4375 Z M 2.078125 -2.484375 "/>
</symbol>
<symbol overflow="visible" id="glyph1-2">
<path style="stroke:none;" d="M 1.921875 -0.53125 C 1.921875 -0.8125 1.6875 -1.0625 1.390625 -1.0625 C 1.09375 -1.0625 0.859375 -0.8125 0.859375 -0.53125 C 0.859375 -0.234375 1.09375 0 1.390625 0 C 1.6875 0 1.921875 -0.234375 1.921875 -0.53125 Z M 1.921875 -0.53125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-0">
<path style="stroke:none;" d=""/>
</symbol>
<symbol overflow="visible" id="glyph2-1">
<path style="stroke:none;" d="M -6.953125 -3.984375 C -7.09375 -3.9375 -7.15625 -3.90625 -7.15625 -3.75 C -7.15625 -3.59375 -7.09375 -3.5625 -6.953125 -3.515625 L -0.984375 -1.4375 C -0.46875 -1.265625 -0.3125 -0.859375 -0.3125 -0.3125 L 0 -0.3125 C -0.015625 -0.546875 -0.03125 -0.984375 -0.03125 -1.34375 C -0.03125 -1.65625 -0.015625 -2.171875 0 -2.484375 L -0.3125 -2.484375 C -0.3125 -1.984375 -0.5625 -1.734375 -0.8125 -1.734375 C -0.84375 -1.734375 -0.953125 -1.75 -0.96875 -1.765625 L -2.28125 -2.21875 L -2.28125 -4.6875 L -0.75 -5.21875 C -0.703125 -5.234375 -0.65625 -5.25 -0.609375 -5.25 C -0.3125 -5.25 -0.3125 -4.6875 -0.3125 -4.421875 L 0 -4.421875 C -0.03125 -4.78125 -0.03125 -5.484375 -0.03125 -5.859375 C -0.03125 -6.296875 -0.015625 -6.75 0 -7.171875 L -0.3125 -7.171875 L -0.3125 -6.984375 C -0.3125 -6.390625 -0.375 -6.25 -0.703125 -6.140625 Z M -5.84375 -3.453125 L -2.59375 -4.578125 L -2.59375 -2.328125 Z M -5.84375 -3.453125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-2">
<path style="stroke:none;" d="M -2.1875 -1.171875 C -3.8125 -1.171875 -4.234375 -1.984375 -4.234375 -2.515625 C -4.234375 -2.609375 -4.21875 -3.234375 -3.859375 -3.59375 C -3.828125 -3.1875 -3.53125 -3.125 -3.40625 -3.125 C -3.140625 -3.125 -2.9375 -3.296875 -2.9375 -3.578125 C -2.9375 -3.84375 -3.109375 -4.046875 -3.40625 -4.046875 C -4.09375 -4.046875 -4.484375 -3.28125 -4.484375 -2.515625 C -4.484375 -1.265625 -3.40625 -0.34375 -2.15625 -0.34375 C -0.875 -0.34375 0.109375 -1.328125 0.109375 -2.484375 C 0.109375 -3.828125 -1.09375 -4.15625 -1.1875 -4.15625 C -1.296875 -4.15625 -1.296875 -4.046875 -1.296875 -4.015625 C -1.296875 -3.9375 -1.25 -3.90625 -1.1875 -3.890625 C -0.265625 -3.59375 -0.140625 -2.953125 -0.140625 -2.578125 C -0.140625 -2.046875 -0.5625 -1.171875 -2.1875 -1.171875 Z M -2.1875 -1.171875 "/>
</symbol>
<symbol overflow="visible" id="glyph2-3">
<path style="stroke:none;" d="M -0.796875 -3.90625 L 0.109375 -3.90625 L 0 -5.34375 L -0.3125 -5.34375 C -0.3125 -4.65625 -0.375 -4.5625 -0.875 -4.5625 L -4.421875 -4.5625 L -4.3125 -3.09375 L -4 -3.09375 C -4 -3.796875 -3.9375 -3.875 -3.4375 -3.875 L -1.65625 -3.875 C -0.796875 -3.875 -0.109375 -3.40625 -0.109375 -2.671875 C -0.109375 -1.828125 -0.578125 -1.796875 -1.09375 -1.796875 L -4.421875 -1.796875 L -4.3125 -0.3125 L -4 -0.3125 C -4 -1.09375 -3.96875 -1.09375 -3.078125 -1.09375 L -1.578125 -1.09375 C -0.796875 -1.09375 0.109375 -1.09375 0.109375 -2.625 C 0.109375 -3.1875 -0.171875 -3.625 -0.796875 -3.90625 Z M -0.796875 -3.90625 "/>
</symbol>
<symbol overflow="visible" id="glyph2-4">
<path style="stroke:none;" d="M -3.4375 -1.09375 L -0.765625 -1.09375 C -0.3125 -1.09375 -0.3125 -0.984375 -0.3125 -0.3125 L 0 -0.3125 C -0.015625 -0.671875 -0.03125 -1.1875 -0.03125 -1.453125 C -0.03125 -1.703125 -0.015625 -2.234375 0 -2.5625 L -0.3125 -2.5625 C -0.3125 -1.90625 -0.3125 -1.796875 -0.765625 -1.796875 L -2.59375 -1.796875 C -3.640625 -1.796875 -4.203125 -2.5 -4.203125 -3.140625 C -4.203125 -3.765625 -3.65625 -3.875 -3.09375 -3.875 L -0.765625 -3.875 C -0.3125 -3.875 -0.3125 -3.765625 -0.3125 -3.09375 L 0 -3.09375 C -0.015625 -3.453125 -0.03125 -3.953125 -0.03125 -4.234375 C -0.03125 -4.484375 -0.015625 -5.015625 0 -5.34375 L -0.3125 -5.34375 C -0.3125 -4.6875 -0.3125 -4.5625 -0.765625 -4.5625 L -2.59375 -4.5625 C -3.640625 -4.5625 -4.203125 -5.28125 -4.203125 -5.921875 C -4.203125 -6.546875 -3.65625 -6.65625 -3.09375 -6.65625 L -0.765625 -6.65625 C -0.3125 -6.65625 -0.3125 -6.546875 -0.3125 -5.875 L 0 -5.875 C -0.015625 -6.234375 -0.03125 -6.734375 -0.03125 -7.015625 C -0.03125 -7.265625 -0.015625 -7.796875 0 -8.125 L -0.3125 -8.125 C -0.3125 -7.609375 -0.3125 -7.359375 -0.609375 -7.34375 L -2.515625 -7.34375 C -3.375 -7.34375 -3.6875 -7.34375 -4.046875 -7.046875 C -4.21875 -6.90625 -4.421875 -6.5625 -4.421875 -5.984375 C -4.421875 -5.15625 -3.8125 -4.703125 -3.4375 -4.546875 C -4.3125 -4.40625 -4.421875 -3.65625 -4.421875 -3.203125 C -4.421875 -2.484375 -3.984375 -2.015625 -3.375 -1.734375 L -4.421875 -1.734375 L -4.3125 -0.3125 L -4 -0.3125 C -4 -1.015625 -3.9375 -1.09375 -3.4375 -1.09375 Z M -3.4375 -1.09375 "/>
</symbol>
<symbol overflow="visible" id="glyph2-5">
<path style="stroke:none;" d="M -6.9375 -1.765625 L -6.828125 -0.328125 L -6.515625 -0.328125 C -6.515625 -1.03125 -6.453125 -1.109375 -5.953125 -1.109375 L -0.765625 -1.109375 C -0.3125 -1.109375 -0.3125 -1 -0.3125 -0.328125 L 0 -0.328125 C -0.015625 -0.65625 -0.03125 -1.1875 -0.03125 -1.4375 C -0.03125 -1.6875 -0.015625 -2.1875 0 -2.546875 L -0.3125 -2.546875 C -0.3125 -1.875 -0.3125 -1.765625 -0.765625 -1.765625 Z M -6.9375 -1.765625 "/>
</symbol>
<symbol overflow="visible" id="glyph2-6">
<path style="stroke:none;" d="M -0.765625 -3.328125 C -0.359375 -3.375 0.0625 -3.640625 0.0625 -4.109375 C 0.0625 -4.3125 -0.078125 -4.9375 -0.890625 -4.9375 L -1.453125 -4.9375 L -1.453125 -4.6875 L -0.890625 -4.6875 C -0.3125 -4.6875 -0.25 -4.4375 -0.25 -4.3125 C -0.25 -3.984375 -0.703125 -3.953125 -0.75 -3.953125 L -2.75 -3.953125 C -3.171875 -3.953125 -3.5625 -3.953125 -3.9375 -3.59375 C -4.3125 -3.203125 -4.484375 -2.703125 -4.484375 -2.21875 C -4.484375 -1.40625 -4.015625 -0.703125 -3.34375 -0.703125 C -3.046875 -0.703125 -2.875 -0.90625 -2.875 -1.171875 C -2.875 -1.453125 -3.078125 -1.625 -3.34375 -1.625 C -3.453125 -1.625 -3.796875 -1.578125 -3.796875 -1.125 C -4.15625 -1.390625 -4.265625 -1.875 -4.265625 -2.203125 C -4.265625 -2.6875 -3.875 -3.265625 -2.984375 -3.265625 L -2.609375 -3.265625 C -2.578125 -2.75 -2.546875 -2.046875 -2.25 -1.421875 C -1.90625 -0.671875 -1.390625 -0.421875 -0.953125 -0.421875 C -0.140625 -0.421875 0.109375 -1.390625 0.109375 -2.015625 C 0.109375 -2.6875 -0.296875 -3.140625 -0.765625 -3.328125 Z M -2.40625 -3.265625 L -1.40625 -3.265625 C -0.453125 -3.265625 -0.109375 -2.546875 -0.109375 -2.09375 C -0.109375 -1.59375 -0.453125 -1.1875 -0.953125 -1.1875 C -1.515625 -1.1875 -2.34375 -1.609375 -2.40625 -3.265625 Z M -2.40625 -3.265625 "/>
</symbol>
<symbol overflow="visible" id="glyph2-7">
<path style="stroke:none;" d="M -4 -1.734375 L -4 -3.15625 L -4.3125 -3.15625 L -4.3125 -1.734375 L -6.15625 -1.734375 L -6.15625 -1.484375 C -5.328125 -1.46875 -4.265625 -1.171875 -4.21875 -0.1875 L -4 -0.1875 L -4 -1.046875 L -1.234375 -1.046875 C -0.015625 -1.046875 0.109375 -1.96875 0.109375 -2.328125 C 0.109375 -3.046875 -0.59375 -3.3125 -1.234375 -3.3125 L -1.8125 -3.3125 L -1.8125 -3.0625 L -1.265625 -3.0625 C -0.515625 -3.0625 -0.140625 -2.765625 -0.140625 -2.40625 C -0.140625 -1.734375 -1.046875 -1.734375 -1.21875 -1.734375 Z M -4 -1.734375 "/>
</symbol>
<symbol overflow="visible" id="glyph2-8">
<path style="stroke:none;" d="M -2.515625 -1.125 C -4.015625 -1.1875 -4.265625 -2.015625 -4.265625 -2.359375 C -4.265625 -3.390625 -2.90625 -3.484375 -2.515625 -3.484375 Z M -2.3125 -1.109375 L -2.3125 -3.90625 C -2.3125 -4.125 -2.3125 -4.15625 -2.515625 -4.15625 C -3.515625 -4.15625 -4.484375 -3.609375 -4.484375 -2.359375 C -4.484375 -1.203125 -3.453125 -0.28125 -2.203125 -0.28125 C -0.859375 -0.28125 0.109375 -1.328125 0.109375 -2.484375 C 0.109375 -3.703125 -1 -4.15625 -1.1875 -4.15625 C -1.296875 -4.15625 -1.3125 -4.0625 -1.3125 -4.015625 C -1.3125 -3.9375 -1.25 -3.90625 -1.171875 -3.890625 C -0.140625 -3.546875 -0.140625 -2.640625 -0.140625 -2.546875 C -0.140625 -2.046875 -0.4375 -1.640625 -0.8125 -1.40625 C -1.296875 -1.109375 -1.953125 -1.109375 -2.3125 -1.109375 Z M -2.3125 -1.109375 "/>
</symbol>
<symbol overflow="visible" id="glyph2-9">
<path style="stroke:none;" d="M -0.546875 -3.796875 L 0.109375 -3.796875 L 0 -5.265625 L -0.3125 -5.265625 C -0.3125 -4.5625 -0.375 -4.484375 -0.875 -4.484375 L -6.9375 -4.484375 L -6.828125 -3.046875 L -6.515625 -3.046875 C -6.515625 -3.75 -6.453125 -3.828125 -5.953125 -3.828125 L -3.796875 -3.828125 C -4.15625 -3.546875 -4.421875 -3.109375 -4.421875 -2.5625 C -4.421875 -1.390625 -3.4375 -0.34375 -2.15625 -0.34375 C -0.875 -0.34375 0.109375 -1.3125 0.109375 -2.453125 C 0.109375 -3.09375 -0.234375 -3.546875 -0.546875 -3.796875 Z M -3.234375 -3.796875 L -1.1875 -3.796875 C -1 -3.796875 -0.984375 -3.796875 -0.8125 -3.6875 C -0.328125 -3.390625 -0.109375 -2.9375 -0.109375 -2.515625 C -0.109375 -2.0625 -0.375 -1.703125 -0.75 -1.453125 C -1.15625 -1.203125 -1.734375 -1.171875 -2.140625 -1.171875 C -2.515625 -1.171875 -3.109375 -1.1875 -3.5625 -1.484375 C -3.875 -1.6875 -4.203125 -2.0625 -4.203125 -2.609375 C -4.203125 -2.953125 -4.046875 -3.375 -3.59375 -3.6875 C -3.4375 -3.796875 -3.40625 -3.796875 -3.234375 -3.796875 Z M -3.234375 -3.796875 "/>
</symbol>
<symbol overflow="visible" id="glyph2-10">
<path style="stroke:none;" d="M -1.9375 -2.078125 C -1.90625 -2.296875 -1.734375 -3.125 -1.015625 -3.125 C -0.515625 -3.125 -0.109375 -2.765625 -0.109375 -1.984375 C -0.109375 -1.15625 -0.6875 -0.796875 -1.53125 -0.59375 C -1.65625 -0.5625 -1.703125 -0.5625 -1.703125 -0.453125 C -1.703125 -0.328125 -1.625 -0.328125 -1.453125 -0.328125 L -0.125 -0.328125 C 0.046875 -0.328125 0.109375 -0.328125 0.109375 -0.4375 C 0.109375 -0.484375 0.09375 -0.5 -0.09375 -0.6875 C -0.109375 -0.703125 -0.125 -0.703125 -0.3125 -0.890625 C 0.09375 -1.328125 0.109375 -1.78125 0.109375 -1.984375 C 0.109375 -3.140625 -0.5625 -3.59375 -1.28125 -3.59375 C -1.8125 -3.59375 -2.109375 -3.296875 -2.234375 -3.1875 C -2.546875 -2.84375 -2.625 -2.453125 -2.703125 -2.046875 C -2.8125 -1.484375 -2.953125 -0.8125 -3.53125 -0.8125 C -3.875 -0.8125 -4.296875 -1.0625 -4.296875 -1.9375 C -4.296875 -3.03125 -3.390625 -3.078125 -3.078125 -3.09375 C -2.984375 -3.109375 -2.984375 -3.203125 -2.984375 -3.21875 C -2.984375 -3.34375 -3.046875 -3.34375 -3.234375 -3.34375 L -4.234375 -3.34375 C -4.40625 -3.34375 -4.484375 -3.34375 -4.484375 -3.234375 C -4.484375 -3.1875 -4.484375 -3.171875 -4.359375 -3.046875 C -4.3125 -3.015625 -4.234375 -2.90625 -4.203125 -2.875 C -4.484375 -2.484375 -4.484375 -2.078125 -4.484375 -1.9375 C -4.484375 -0.703125 -3.8125 -0.328125 -3.25 -0.328125 C -2.90625 -0.328125 -2.625 -0.484375 -2.40625 -0.765625 C -2.140625 -1.078125 -2.078125 -1.359375 -1.9375 -2.078125 Z M -1.9375 -2.078125 "/>
</symbol>
</g>
<clipPath id="clip1">
<path d="M 37 152 L 434.289062 152 L 434.289062 153 L 37 153 Z M 37 152 "/>
</clipPath>
<clipPath id="clip2">
<path d="M 37 137 L 434.289062 137 L 434.289062 138 L 37 138 Z M 37 137 "/>
</clipPath>
<clipPath id="clip3">
<path d="M 37 122 L 434.289062 122 L 434.289062 123 L 37 123 Z M 37 122 "/>
</clipPath>
<clipPath id="clip4">
<path d="M 37 107 L 434.289062 107 L 434.289062 108 L 37 108 Z M 37 107 "/>
</clipPath>
<clipPath id="clip5">
<path d="M 37 92 L 434.289062 92 L 434.289062 93 L 37 93 Z M 37 92 "/>
</clipPath>
<clipPath id="clip6">
<path d="M 37 77 L 434.289062 77 L 434.289062 78 L 37 78 Z M 37 77 "/>
</clipPath>
<clipPath id="clip7">
<path d="M 37 62 L 434.289062 62 L 434.289062 64 L 37 64 Z M 37 62 "/>
</clipPath>
<clipPath id="clip8">
<path d="M 37 47 L 434.289062 47 L 434.289062 49 L 37 49 Z M 37 47 "/>
</clipPath>
<clipPath id="clip9">
<path d="M 37 33 L 434.289062 33 L 434.289062 34 L 37 34 Z M 37 33 "/>
</clipPath>
<clipPath id="clip10">
<path d="M 37 18 L 434.289062 18 L 434.289062 19 L 37 19 Z M 37 18 "/>
</clipPath>
<clipPath id="clip11">
<path d="M 37 3 L 434.289062 3 L 434.289062 4 L 37 4 Z M 37 3 "/>
</clipPath>
<clipPath id="clip12">
<path d="M 36 151 L 434.289062 151 L 434.289062 153 L 36 153 Z M 36 151 "/>
</clipPath>
<clipPath id="clip13">
<path d="M 36 122 L 434.289062 122 L 434.289062 123 L 36 123 Z M 36 122 "/>
</clipPath>
<clipPath id="clip14">
<path d="M 36 92 L 434.289062 92 L 434.289062 94 L 36 94 Z M 36 92 "/>
</clipPath>
<clipPath id="clip15">
<path d="M 36 62 L 434.289062 62 L 434.289062 64 L 36 64 Z M 36 62 "/>
</clipPath>
<clipPath id="clip16">
<path d="M 36 32 L 434.289062 32 L 434.289062 34 L 36 34 Z M 36 32 "/>
</clipPath>
<clipPath id="clip17">
<path d="M 36 3 L 434.289062 3 L 434.289062 4 L 36 4 Z M 36 3 "/>
</clipPath>
<clipPath id="clip18">
<path d="M 409 28 L 434.289062 28 L 434.289062 153 L 409 153 Z M 409 28 "/>
</clipPath>
<clipPath id="clip19">
<path d="M 408 28 L 434.289062 28 L 434.289062 153 L 408 153 Z M 408 28 "/>
</clipPath>
<clipPath id="clip20">
<path d="M 433 26 L 434.289062 26 L 434.289062 153 L 433 153 Z M 433 26 "/>
</clipPath>
<clipPath id="clip21">
<path d="M 433 151 L 434.289062 151 L 434.289062 153 L 433 153 Z M 433 151 "/>
</clipPath>
<clipPath id="clip22">
<path d="M 428 149 L 434.289062 149 L 434.289062 155 L 428 155 Z M 428 149 "/>
</clipPath>
<clipPath id="clip23">
<path d="M 220 177 L 234 177 L 234 184.589844 L 220 184.589844 Z M 220 177 "/>
</clipPath>
<clipPath id="clip24">
<path d="M 234 177 L 245 177 L 245 184.589844 L 234 184.589844 Z M 234 177 "/>
</clipPath>
<clipPath id="clip25">
<path d="M 247 177 L 251 177 L 251 184.589844 L 247 184.589844 Z M 247 177 "/>
</clipPath>
</defs>
<g id="surface1">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 495.546875 323.4 L 495.546875 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 743.554688 323.4 L 743.554688 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 991.640625 323.4 L 991.640625 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1239.648438 323.4 L 1239.648438 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1487.65625 323.4 L 1487.65625 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1735.742188 323.4 L 1735.742188 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1983.75 323.4 L 1983.75 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2231.757812 323.4 L 2231.757812 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2479.84375 323.4 L 2479.84375 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2727.851562 323.4 L 2727.851562 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2975.859375 323.4 L 2975.859375 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3223.945312 323.4 L 3223.945312 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3471.953125 323.4 L 3471.953125 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3719.960938 323.4 L 3719.960938 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3968.046875 323.4 L 3968.046875 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4216.054688 323.4 L 4216.054688 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g clip-path="url(#clip1)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 323.4 L 4340.039062 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip2)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 472.189063 L 4340.039062 472.189063 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip3)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 620.978125 L 4340.039062 620.978125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip4)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 769.884375 L 4340.039062 769.884375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip5)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 918.673438 L 4340.039062 918.673438 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip6)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1067.501563 L 4340.039062 1067.501563 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip7)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1216.290625 L 4340.039062 1216.290625 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip8)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1365.079688 L 4340.039062 1365.079688 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip9)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1513.985938 L 4340.039062 1513.985938 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip10)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1662.775 L 4340.039062 1662.775 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip11)" clip-rule="nonzero">
<path style="fill:none;stroke-width:2.83465;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(87.068176%,86.833191%,86.891174%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1811.603125 L 4340.039062 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip12)" clip-rule="nonzero">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 323.4 L 4340.039062 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip13)" clip-rule="nonzero">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 620.978125 L 4340.039062 620.978125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip14)" clip-rule="nonzero">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 918.673438 L 4340.039062 918.673438 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip15)" clip-rule="nonzero">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1216.290625 L 4340.039062 1216.290625 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip16)" clip-rule="nonzero">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1513.985938 L 4340.039062 1513.985938 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip17)" clip-rule="nonzero">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(65.501404%,64.872742%,65.028381%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1811.603125 L 4340.039062 1811.603125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 37.15625 152.25 L 61.953125 152.25 L 61.953125 128.460938 L 37.15625 128.460938 Z M 37.15625 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 323.4 L 371.5625 561.290625 L 619.53125 561.290625 L 619.53125 323.4 L 371.5625 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 61.953125 152.25 L 86.765625 152.25 L 86.765625 122.902344 L 61.953125 122.902344 Z M 61.953125 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 619.53125 323.4 L 619.53125 616.876563 L 867.65625 616.876563 L 867.65625 323.4 L 619.53125 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 86.765625 152.25 L 111.566406 152.25 L 111.566406 113.300781 L 86.765625 113.300781 Z M 86.765625 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 867.65625 323.4 L 867.65625 712.892188 L 1115.625 712.892188 L 1115.625 323.4 L 867.65625 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 111.5625 152.25 L 136.363281 152.25 L 136.363281 85.082031 L 111.5625 85.082031 Z M 111.5625 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1115.625 323.4 L 1115.625 995.079688 L 1363.632812 995.079688 L 1363.632812 323.4 L 1115.625 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 136.363281 152.25 L 161.175781 152.25 L 161.175781 78.652344 L 136.363281 78.652344 Z M 136.363281 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1363.632812 323.4 L 1363.632812 1059.376563 L 1611.757812 1059.376563 L 1611.757812 323.4 L 1363.632812 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 161.175781 152.25 L 185.976562 152.25 L 185.976562 72.699219 L 161.175781 72.699219 Z M 161.175781 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1611.757812 323.4 L 1611.757812 1118.907813 L 1859.765625 1118.907813 L 1859.765625 323.4 L 1611.757812 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 185.976562 152.25 L 210.773438 152.25 L 210.773438 67.691406 L 185.976562 67.691406 Z M 185.976562 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1859.765625 323.4 L 1859.765625 1168.985938 L 2107.734375 1168.985938 L 2107.734375 323.4 L 1859.765625 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 210.773438 152.25 L 235.585938 152.25 L 235.585938 62 L 210.773438 62 Z M 210.773438 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2107.734375 323.4 L 2107.734375 1225.9 L 2355.859375 1225.9 L 2355.859375 323.4 L 2107.734375 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 235.585938 152.25 L 260.386719 152.25 L 260.386719 60.820312 L 235.585938 60.820312 Z M 235.585938 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2355.859375 323.4 L 2355.859375 1237.696875 L 2603.867188 1237.696875 L 2603.867188 323.4 L 2355.859375 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 260.386719 152.25 L 285.183594 152.25 L 285.183594 52.101562 L 260.386719 52.101562 Z M 260.386719 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2603.867188 323.4 L 2603.867188 1324.884375 L 2851.835938 1324.884375 L 2851.835938 323.4 L 2603.867188 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 285.183594 152.25 L 309.984375 152.25 L 309.984375 52.101562 L 285.183594 52.101562 Z M 285.183594 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2851.835938 323.4 L 2851.835938 1324.884375 L 3099.84375 1324.884375 L 3099.84375 323.4 L 2851.835938 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 309.984375 152.25 L 334.792969 152.25 L 334.792969 42.402344 L 309.984375 42.402344 Z M 309.984375 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3099.84375 323.4 L 3099.84375 1421.876563 L 3347.96875 1421.876563 L 3347.96875 323.4 L 3099.84375 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 334.796875 152.25 L 359.59375 152.25 L 359.59375 38.390625 L 334.796875 38.390625 Z M 334.796875 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3347.96875 323.4 L 3347.96875 1461.99375 L 3595.9375 1461.99375 L 3595.9375 323.4 L 3347.96875 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 359.59375 152.25 L 384.394531 152.25 L 384.394531 37.160156 L 359.59375 37.160156 Z M 359.59375 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3595.9375 323.4 L 3595.9375 1474.298438 L 3843.945312 1474.298438 L 3843.945312 323.4 L 3595.9375 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 384.394531 152.25 L 409.207031 152.25 L 409.207031 37.152344 L 384.394531 37.152344 Z M 384.394531 152.25 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3843.945312 323.4 L 3843.945312 1474.376563 L 4092.03125 1474.376563 L 4092.03125 323.4 L 3843.945312 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g clip-path="url(#clip18)" clip-rule="nonzero">
<path style=" stroke:none;fill-rule:evenodd;fill:rgb(96.662903%,55.151367%,42.874146%);fill-opacity:1;" d="M 409.203125 152.25 L 434.003906 152.25 L 434.003906 28.519531 L 409.203125 28.519531 Z M 409.203125 152.25 "/>
</g>
<g clip-path="url(#clip19)" clip-rule="nonzero">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4092.03125 323.4 L 4092.03125 1560.704688 L 4340.039062 1560.704688 L 4340.039062 323.4 L 4092.03125 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip20)" clip-rule="nonzero">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4340.039062 323.4 L 4340.039062 1576.407813 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip21)" clip-rule="nonzero">
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4340.039062 323.4 L 4340.039062 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
</g>
<g clip-path="url(#clip22)" clip-rule="nonzero">
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 429.574219 152.25 L 428.464844 154.550781 L 434.003906 152.25 L 428.464844 149.949219 Z M 429.574219 152.25 "/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 323.4 L 4295.742188 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 495.546875 323.4 L 495.546875 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="47.0637" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 743.554688 323.4 L 743.554688 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="71.8637" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 991.640625 323.4 L 991.640625 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="96.6738" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1239.648438 323.4 L 1239.648438 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-4" x="121.474" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1487.65625 323.4 L 1487.65625 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="146.274" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1735.742188 323.4 L 1735.742188 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-6" x="171.084" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1983.75 323.4 L 1983.75 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-7" x="195.884" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2231.757812 323.4 L 2231.757812 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-8" x="220.684" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2479.84375 323.4 L 2479.84375 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-9" x="245.494" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2727.851562 323.4 L 2727.851562 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="267.804" y="167.6654"/>
<use xlink:href="#glyph0-10" x="272.804" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 2975.859375 323.4 L 2975.859375 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="292.604" y="167.6654"/>
<use xlink:href="#glyph0-1" x="297.604" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3223.945312 323.4 L 3223.945312 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="317.414" y="167.6654"/>
<use xlink:href="#glyph0-2" x="322.414" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3471.953125 323.4 L 3471.953125 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="342.214" y="167.6654"/>
<use xlink:href="#glyph0-3" x="347.214" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3719.960938 323.4 L 3719.960938 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="367.014" y="167.6654"/>
<use xlink:href="#glyph0-4" x="372.014" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3968.046875 323.4 L 3968.046875 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="391.824" y="167.6654"/>
<use xlink:href="#glyph0-5" x="396.824" y="167.6654"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4216.054688 323.4 L 4216.054688 357.384375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="416.624" y="167.6654"/>
<use xlink:href="#glyph0-6" x="421.624" y="167.6654"/>
</g>
<g clip-path="url(#clip23)" clip-rule="nonzero">
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-11" x="220.034" y="184.0853"/>
<use xlink:href="#glyph0-12" x="229.194" y="184.0853"/>
</g>
</g>
<g clip-path="url(#clip24)" clip-rule="nonzero">
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-13" x="234.424225" y="184.0853"/>
<use xlink:href="#glyph0-14" x="239.974225" y="184.0853"/>
</g>
</g>
<g clip-path="url(#clip25)" clip-rule="nonzero">
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph1-1" x="247.7078" y="184.0853"/>
</g>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;" d="M 37.15625 7.871094 L 39.453125 8.972656 L 37.15625 3.429688 L 34.855469 8.972656 Z M 37.15625 7.871094 "/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 323.4 L 371.5625 1767.189063 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 323.4 L 405.546875 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-10" x="23.6738" y="155.7353"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 620.978125 L 405.546875 620.978125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-10" x="15.9238" y="125.9752"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph1-2" x="20.9238" y="125.9752"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="23.69372" y="125.9752"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 918.673438 L 405.546875 918.673438 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-10" x="15.9238" y="96.2052"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph1-2" x="20.9238" y="96.2052"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-4" x="23.69372" y="96.2052"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1216.290625 L 405.546875 1216.290625 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-10" x="15.9238" y="66.445"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph1-2" x="20.9238" y="66.445"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-6" x="23.69372" y="66.445"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1513.985938 L 405.546875 1513.985938 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-10" x="15.9238" y="36.675"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph1-2" x="20.9238" y="36.675"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-8" x="23.69372" y="36.675"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="23.673798" y="6.9152"/>
</g>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 323.4 L 395.664062 323.4 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 472.189063 L 395.664062 472.189063 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 620.978125 L 395.664062 620.978125 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 769.884375 L 395.664062 769.884375 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 918.673438 L 395.664062 918.673438 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1067.501563 L 395.664062 1067.501563 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1216.290625 L 395.664062 1216.290625 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1365.079688 L 395.664062 1365.079688 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1513.985938 L 395.664062 1513.985938 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<path style="fill:none;stroke-width:5.66929;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(13.729858%,12.159729%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 371.5625 1662.775 L 395.664062 1662.775 " transform="matrix(0.1,0,0,-0.1,0,184.59)"/>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph2-1" x="7.41914" y="118.5814"/>
<use xlink:href="#glyph2-2" x="7.41914" y="111.0814"/>
<use xlink:href="#glyph2-2" x="7.41914" y="106.6414"/>
<use xlink:href="#glyph2-3" x="7.41914" y="102.2014"/>
<use xlink:href="#glyph2-4" x="7.41914" y="96.6514"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph2-3" x="7.41914" y="88.693507"/>
<use xlink:href="#glyph2-5" x="7.41914" y="83.143507"/>
<use xlink:href="#glyph2-6" x="7.41914" y="80.373507"/>
<use xlink:href="#glyph2-7" x="7.41914" y="75.373507"/>
<use xlink:href="#glyph2-8" x="7.41914" y="71.493507"/>
<use xlink:href="#glyph2-9" x="7.41914" y="67.053507"/>
</g>
<g style="fill:rgb(13.729858%,12.159729%,12.548828%);fill-opacity:1;">
<use xlink:href="#glyph2-4" x="7.41914" y="58.252107"/>
<use xlink:href="#glyph2-6" x="7.41914" y="49.922107"/>
<use xlink:href="#glyph2-10" x="7.41914" y="44.922107"/>
<use xlink:href="#glyph2-10" x="7.41914" y="40.982107"/>
</g>
</g>
</svg>

BIN
axi-inches-3d.fcstd Vedi File


BIN
axi-inches-3d.fcstd1 Vedi File


BIN
axi-inches-3d.png Vedi File

Before After
Width: 1596  |  Height: 727  |  Size: 100KB Width: 485  |  Height: 401  |  Size: 59KB

BIN
case-mode1.webm Vedi File


BIN
case-mode2.webm Vedi File


BIN
case-mode3.webm Vedi File


BIN
case-mode4.webm Vedi File


BIN
case-mode5.webm Vedi File


BIN
case-mode6.webm Vedi File


BIN
case-mode7.webm Vedi File


BIN
case-mode8.webm Vedi File


BIN
case-mode9.webm Vedi File


+ 172
- 0
comments-lukasz.md Vedi File

@@ -0,0 +1,172 @@

First of all, I want to thank you for this email for several reasons:

1. you took away a huge amount of time for a thorough read and for writing these detail feedback. This has already payed off my effort!
2. you indeed read between lines and grasped the "behind-the-lines" message. I am glad you did.
3. you respectfully said what you think even though someone might take it badly. Luckily it is not my case, so this is a win-win because you told me I suck with a lot of sound arguments, and I like being told I suck (with sound arguments)

You are right and have a point in almost any of the issues you describe. If you allow me, I will try to respectfully argue back some of your points.
Please Angus and Nick feel free to write anything you want. Probably Nick, who already read the case did not dare to write something like this but now he has te #meetoo hash :-)



On Tue, 2019-09-10 at 12:02 +0200, Łukasz Skotny wrote:
Hey Guys,
I had some time so I gave a Jeremys CS a read.
My comments are below. Again I apologize Jeremy if I may sound harsh. As you know time is of an essence as always so I might use some shortcuts etc. which may make me sound inpolite or something. I apologize in advance. In the end the goal is only to have the best book ever, and this is what I had in mind.

You are not harsh at all. I loved everything you wrote.

I really like the beginning – when you start with the students “millennials” and all – it’s pretty cool and set up a nice “mood for reading it” – cool stuff!
The pendulum example was fun… you know something simple and then complex – I see what you try to do here
I don’t like you using me personally as an example, since it’s your text and I cannot make an argument to you. I think you really “flatten” my stance on math and make it look shallow and then at least several times you write something like “don’t fear math” etc. And… the math you mention isn’t even what I have in mind (a stress tensor for crying out loud – that is borderline insulting me). I don’t have the mental capacity to argue with you on this – I did it countless times already with various PhD and experts around the world, and so far only one guy proved to me that understanding complex math (as I understand it, so definitely not the stress tensor!) has it uses… and it was only because he modified his own solver to compute a problem faster (kudos, I would never achieve such a thing, but this is not a game changer for me). So please do not use my name, or even reference me or suggest that in any form in your text. Otherwise I will have to insist to use my arguments in full not the shallow version of “Łukasz is afraid of math, silly him” because I don’t fancy that

I get your point, because I wanted to say A, I wrote B (especially in a non-native language) and people understand from C to Z. I apologize if I insulted you, of course I did not want to do that. I will try to ellaborate.

As we all four know, we can use this text more like a way of reaching other people and eventually selling them consulting, training or whatever we do for a living. So when I first wrote it, I thought about trying to make a point about this issue of "maths" or "no-maths." I have interacted with a lot of people with a wide variety of backgrounds and my life (both professional and commercial) would have been far better if most of these people talked "the same language", i.e. maths. In fact the best projects turn out to be with those clients who understand and appreciate the maths behind the solution.

It is in this regard that I wanted to use the text for future reference. Of course you are not afraid of stress tensors, but you know most people do. And of course you have a PhD (I do not) and know how to solve differential equations, but many people do not even undertand why they have to set displacement boundary conditions in FEM problems. Let alone wanting to obtain "thermal stresses" by just solving heat conduction and not knowing what displacement boundary conditions they need. The spirit of my writing was this.

On the other hand, I do understand that you need to say to your potential clients "you do not need to know maths to use FEM," and you are 100% right! I tried to make a point with the example of the driver who do not need to know thermodynamics, but I clearly failed. You see, if this text is going to be read by students which are more likely to know thermodynamics when driving a car, they already might know all of the math I present. For them (and for all of us) the math in the text in pretty basic, yet the majority of canned FEM software users will not be comfortable with a line integral to compute the bending stress. So it is a way to reinforce the students' self esteem: hey, this guy says that most people fear maths and I do not, so I would have to be something!

I will hapily either

a. remove your name from the quotation, or
b. explain better my point and your case

Again, the readers of your blog and the people that take your courses are plain drivers. The readers of the CSs are the team engineers of the race car.



I really got worried reading your text just above chapter 5.2.1 where you write “this is not a case-study but general ideas….”. This is not what we were hired to do I’m afraid. We agreed to demonstrate an industrial case-study of an actually solved problem, and I haven’t found that in your work, which was really disappointing. Also I can imagine Nafems may share this concern, especially since you even state yourself that this is not a case-study…

Sure, if I did then I would have to write a lot of sensible information regarding a particular nuclear power plant. This industry is very jealous regarding the sharing of information. I had to ask for permission to the plant owner, so I had to remove all numerical data and give only general information. They even accepted because I told them that this was primarily for students.

I will re-write that paragraph to reinforce this point.

Don’t get me wrong, your style of writing is really fun (to the degree that I was actually surprised, since you seemed rigid when you were commenting my style), I like know you have those small stories and “breaks” molded into the text – It’s a wonderful introduction to any topic. But this is also the problem as well. After 15 or so pages (near seismic loads if I recall) I was starting to feel a bit “tired”. I felt that I’m still reading the introduction, but I wanted to learn some practical things instead

Yes, I do not expect someone to read the whole thing in a single run.

(that is a purpose of a case-study after all). And so:
5.3.2.1 you are using several equations there, but I honestly have no idea what is the purpose of that. They just appear there without derivation nor explanation and I have no idea what is the point. The entire section can be summarized as what you write under those equations in 4 points, and that text alone would be just as believable, since in my opinion those equations don’t bring anything to the game.

The derivation should be in a referenced paper (I will check it is properly linked):
https://seamplex.com/docs/pipe-linearized/

The point of those equations are that in school you learn how to solve this idealized case, and the result is just that: an equation. No other application whatsoever.
Yet, you see that displacements are linear with pressure, and that stuff. This should be referenced back in the real case, noting that displacement will _mostly_ be linear with respect to the pressure.

Will reinforce the idea because it clearly was not delivered.

5.4.1 I fail to understand how discussion about an industrial case-study included a topic about finite differences, volumes
and elements. I mean sure, this is a pretty interesting topic but for a lecture set on FEA… not a case study

Ok, maybe you are right. I wrote this because more than 90% of the people I talk to (and it is 90% because I talk to a lot of people in the academia) think that FEM means "elastic problem." And I wanted to illustrate that you can

a. use FEM for other problems, like electrodynamics
b. solve elasticity with other methods like FVM or FDM

But if somebody else thinks it should be removed, I will remove it.

Then the kinds of finite elements comes – exactly the same approach on my end – I couldn’t wait for the case study to start…

It starts half a page afterwards! :-)

I really like how you explain stuff when it comes to pipelines and thermal stuff and all. The problem I have is that those are very “up high” explanation without much practical guidance. And as far as I understood, the goal was to show how stuff should be done in a specific industrial application so at least some problems are “faced and solved for this particular case”, and not to discuss why we do things and what they mean. And this is a completely different thing in my opinion. Perhaps I misunderstood our purpose here, but without a title I would call your work “Lectures on FEA in pipe design” or something similar. And while this has a tremendous value, I’m not sure if it fits the purpose of our work.

Ok, but again I cannot say particular stuff about the nuclear power plant, yet readers who are not familiar with how reactors work will not know why someone would need to compute fatigue of a pipe.

I.e. you mention that each vibration mode has modal mass an excitation reflecting how important it is. But you don’t say where to get those, or how to determine if this is important or not. I would expect you to describe that for the 6 eigenvalues on fig. 5.11 you would explain how to obtain those values and then what is their meaning, and to which point those modes are “still important”. That would have a big practical significance (something I did with imperfections for example, or Nick did in various ways of modeling of his problem).

Point taken. I did not add the values of the mass of each mode not to add pages to the case, but I will need to. They are nice plots actually!

The same goes to choosing stress paths, showing actual linearization and so on… that would be a practical solution. Sure, of only one specific problem, so some commentary of what was not included if things were omitted is important, but only as an appendix and not the main bulk of the work.

Well, this is one of the most important parts of the case study. If you chose bad paths you will get bad results.
Again, I will have to stress this.

I think that your work (especially with your style which I like!) would really benefit if you would ditch the discussions about several things (finite volums etc.) and instead describe the model you are solving (one particular case). Showed its BC, loads, what you calculate and how, and then discussion of the outcomes. You are doing this in a sense, but this is all not connected and very vague on details, and I think that your knowledge deserves more than what you wrote.

Sorry, but I am not allowed to do that. I can only comment on general stuff.

I must confess I don’t get your owner and a dog metaphor. Some explanation of it would be nice.

Ok, I will have to rewrite this. Let me know if you get this:

You have two blocks, named A and B. Block A weighs 10 kg and block B weighs 5 kg. If you put the two of them in the same scale, would you swear it will indicate 15 kg?
I would not, because if you put two protons and two neutrons together, the result (an alpha particle) weighs less than the sum of the four weights.

What makes us think that weights are always linearly summed?

For someone who critiqued me for the amount of links in my text you used as many as I initially did. So to be fair prepare a webpage with all the resources and post a urt twice as I did, otherwise I will have to admit I did not understand your criticism of what I did at the begining…

You may not believe me but when I raised that point I internally though "hey I might have to order my own links as well"
I just did not get down to modify my text until I got enough feedback. Please believe me! :-)

Nodes vs Elements – I completely don’t agree with you on the nodes part. You know in truth those should be DoF right? So we are both wrong here (in some overall sense, I still thing we are both “good enough”). But you also claim you are right and “everyone else” is wrong, while I only use a simplified metric just as you do. It’s obvious you shouldn’t compare element counts of various elements without using computing time as a metric… but I never did that nor postulated it. And various elements may have different amount of DoF per node anyway… so your node method is just as wrong as mine element method… since it’s DoF that are important. They are just a bit ‘abstract” for me so I would rather use simple metrics (like element count or node count) that people can follow (I feel that element count is better here). It’s not that I don’t like that you are using nodes. What I don’t like is your attitude you state in “This is strange because even in college we are taught…”. I don’t know how others look at it, but I try to be as humble as I can (so at times not that much honestly) because God only knows how many times I was wrong before – and when I read your text I got a feeling that author says “I’m good, the rest are idiots”. And I personally don’t like when authors (and people in general) have such an attitude, even though I struggle with this myself since I remember. I guess it’s your own faults that piss you off in others…

Ok, point taken. Those should be DoFs for the solving part, not for the meshing part.
And for the computation of stresses it is the square of the DoFs. So it is not even that easy.

I though that I had a sound argument about nodes. Again, I wanted my argument to be written somewhere for future reference, but I can remove this whole part for the time being.


I know your philosophy on black boxes and being transparent and “open source” so I was obviously expected your comments on this. While I don’t consider this to be important or even connected to the practical solution of the problem I also have nothing against that really.

Oh, that is not nice to hear. Again, I failed to make a point.

In general my view is: your writing style is really nice – and it was a good read. Apart maybe from the fact that I expected some high-detail practical knowledge there and instead I found a low-res math approach without any particular problem solved.

You know, there is a part that got pruned to get to the target number of pages about a parametric solution of a tee branch with respect to the diameter of the branched pipe. In that part I link those numerical results to the original theoretical solution of the infinite pipe.
In light of your comments aboute being a lecture instead of a case studyy, maybe I should put that part back and prune other stuff.
What do you think?

This was a serious let down for sure – especially since you clearly have the knowledge to explain stuff far more “accurately and specifically” in a step-by-step way. So it’s also like a “wasted chance” to help people out.

I chose the subject because

a. I am a Nuclear Engineer
b. this case was the hardest one I had to solve regarding mechanical engineering (I had to solve more difficult problems regarding neutronics, thermalhydraulics and control systems)

But this case cannot contain an specific recipe of how to proceed. I wanted to illustrate the general steps that someone willing to undertake a similar case has to take into account, but particular details are out of scope because

a. I cannot share them
b. every plant is different

What you wrote definitely has a lot of value, don’t get me wrong. It’s just that as far as I understand this is not a case-study but rather a lecture. I’m not sure how Nafems will treat it (I don’t believe they are super strict to be honest, but still this is borderline in my view). But even if Nafems doesn’t case… I do, and this is why I wrote that.

And I appreciate you having written all this stuff.

This might be a harsh I suspect, but I really hope that I managed to point out where I am coming from in my opinion. By this I mean, I believe in the reasons for which I wrote this, even if the words I used my sound to harsh or impolite (for which I apologize, it was not my intention to offend).

None take. Thanks for all of this.

I hope you won’t hate me for an honest feedback, and of course feel free to disagree with me!

Not that I completely dissagree. In some cases there are only details of difference, in some cases I cannot do it even if I wanted and in some cases I was not able to explain my points. I will try to re-think all of the issues here.

I think that in the end the goal is, that we can produce the best book ever for the “street credit” – and I’m sure we can get there 😊
All the best
Ł

BIN
hamaca.mp4 Vedi File


BIN
hamaca.webm Vedi File


BIN
mode1.webm Vedi File


BIN
mode2.webm Vedi File


BIN
mode3.webm Vedi File


BIN
mode4.webm Vedi File


BIN
mode5.webm Vedi File


BIN
mode6.webm Vedi File


+ 20
- 0
modes.dat Vedi File

@@ -0,0 +1,20 @@
1 32.3567 0.310892 0.159859 -45.9552 -1.24201 0.159859 0.159859
2 58.225 0.109066 0.0373876 13.1635 1.0141 0.0373876 0.197246
3 69.5819 0.168968 0.0645038 -21.5207 -1.07017 0.0645038 0.26175
4 73.4853 0.203388 0.189592 -40.4794 -1.67228 0.189592 0.451342
5 100.999 0.201305 0.0432247 -19.2289 -0.802601 0.0432247 0.494567
6 129.048 0.455763 0.0399822 27.8269 0.513008 0.0399822 0.534549
7 146.34 0.259265 0.0336365 19.2504 0.623871 0.0336365 0.568186
8 156.353 0.239633 0.0382464 19.7347 0.691963 0.0382464 0.606432
9 181.957 0.228298 0.0079467 8.78024 0.323149 0.0079467 0.614379
10 186.997 0.222062 0.0586055 23.5162 0.889801 0.0586055 0.672984
11 233.357 0.255097 7.37642e-06 -0.282772 -0.00931389 7.37642e-06 0.672992
12 242.268 0.244944 0.0651423 -26.0392 -0.89322 0.0651423 0.738134
13 257.41 0.126115 0.0269719 12.0227 0.801001 0.0269719 0.765106
14 275.338 0.191983 0.00824521 8.2015 0.358947 0.00824521 0.773351
15 346.139 0.232634 8.72167e-05 -0.928535 -0.033537 8.72167e-05 0.773439
16 354.036 0.192056 0.0579426 21.7457 0.951363 0.0579426 0.831381
17 415.714 0.104838 0.010602 6.8725 0.550801 0.010602 0.841983
18 437.475 0.0927448 0.00853638 5.8002 0.525476 0.00853638 0.850519
19 466.348 0.191904 0.00115594 -3.07023 -0.134427 0.00115594 0.851675
20 522.373 0.152309 0.0013667 2.97414 0.164072 0.0013667 0.853042

+ 2
- 2
nafems4-full.md Vedi File

@@ -185,9 +185,9 @@ We can note that
That is all what we can say about an infinite pipe with uniform material properties subject to an uniform internal pressure\ $p$. If

* the pipe was not infinite (say any real pipe that has to start and end somewhere), or
* the cross-section of the pipe is not constant along the axis (say there is an elbow or even a reduction), or
* the cross-section of the pipe was not constant along the axis (say there is an elbow or even a reduction), or
* there was more than one pipe (say there is a tee), or
* the material properties are not uniform (say the pipe does not have an uniform temperature but a distribution), or
* the material properties were not uniform (say the pipe does not have an uniform temperature but a distribution), or
* the pressure was not uniform (say because there is liquid inside and its weight cannot be neglected),

\noindent then we would no longer be able to fully solve the problem with paper and pencil and draw all the conclusions above. However, at least we have a start because we know that if the pipe is finite but long enough or the temperature is not uniform but almost, we still can use the analytical equations as approximations. After all, [Enrico Fermi](https://en.wikipedia.org/wiki/Enrico_Fermi) managed to reach criticality in the [Chicago Pile-1](https://en.wikipedia.org/wiki/Chicago_Pile-1) with paper and pencil. But what happens if the pipe is short, there are branches and temperature changes like during a transient in a nuclear reactor? Well, that is why we have finite elements. And this is where what we learned at college pretty much ends.

+ 97
- 96
nafems4.md Vedi File

@@ -21,7 +21,7 @@ Whether you are a student or a seasoned engineer with many years of experience,
![Simple pendulum](simple.svg){#fig:simple width=35%}\
![Real pendulum](hamaca.jpg){#fig:hamaca width=60%}

A simple pendulum from college physics courses and a real-life pendulum. Hint: the swing’s period _does_ depend on the hanging mass. See the [actual video](hamaca.webm)
A [simple pendulum from college physics courses](https://www.seamplex.com/wasora/doc/realbook/012-mechanics/) and a real-life pendulum. Hint: the swing’s period _does_ depend on the hanging mass as shown in\ <https://youtu.be/Q-lKK4A2OzA>
:::::

::::: {#fig:pipes}
@@ -31,7 +31,7 @@ A simple pendulum from college physics courses and a real-life pendulum. Hint: t
An infinitely-long pressurised thick pipe as taught in college and an isometric drawing of a section of a real-life piping system
:::::

Like the pendulums above, we will be swinging back and forth between a case study about fatigue assessment of piping systems in a nuclear power plant and more generic and even “romantic” topics related to finite elements and computational mechanics. These latter regressions will not remain just as abstract theoretical ideas. Not only will they be directly applicable to the development of the main case, but they will also apply to a great deal of other engineering problems tackled with the finite element method (and its cousins, [@sec:formulations]).
Like the pendulums above, we will be swinging back and forth between a case study about fatigue assessment of piping systems in a nuclear power plant and more generic topics related to finite elements and computational mechanics. These latter regressions will not remain just as abstract theoretical ideas. Not only will they be directly applicable to the development of the main case, but they will also apply to a great deal of other engineering problems tackled with the finite element method (and its cousins, [@sec:formulations]).

\medskip

@@ -47,15 +47,13 @@ There are some useful tricks that come handy when trying to solve a mechanical p


One of the most important ones to use your _imagination_. You will need a lot of imagination to “see” what it is actually going on when analysing an engineering problem. This skill comes from my background in nuclear engineering where I had no choice but to imagine a [positron-electron annihilation](https://en.wikipedia.org/wiki/Electron%E2%80%93positron_annihilation) or an [spontaneous fission](https://en.wikipedia.org/wiki/Spontaneous_fission). But in mechanical engineering, it is likewise important to be able to imagine how the loads “press” one element with the other, how the material reacts depending on its properties, how the nodal displacements generate stresses (both normal and shear), how results converge, etc. And what these results actually mean besides the pretty-coloured figures.^[A former boss once told me “I need the CFD” when I handed in some results. I replied that I did not do computational fluid-dynamics but computed the neutron flux kinetics within a nuclear reactor core. He joked “I know, what I need are the _Colors For Directors_, those pretty-coloured figures along with your actual results to convince the managers.”]
This journey will definitely need your imagination. We will see equations, numbers, plots, schematics, CAD geometries, 3D\ views, etc. Still, when the theory says “thermal expansion produces normal stresses” you have to picture in your head three little arrows pulling away from the same point in three directions, or whatever mental picture you have about what you understand thermally-induced stresses are. What comes to your mind when someone says that out of the nine elements of the [stress tensor](https://en.wikipedia.org/wiki/Cauchy_stress_tensor) ([@sec:tensor]) there are only six that are independent? Whatever it is, try to practice that kind of graphical thoughts with every new concept. Nevertheless, there will be particular locations of the text where imagination will be most useful. I will bring the subject up.
This journey will definitely need your imagination. We will take a look at equations, numbers, plots, schematics, CAD geometries, 3D\ views, etc. Still, when the theory says “thermal expansion produces normal stresses” you have to picture in your head three little arrows pulling away from the same point in three directions, or whatever mental picture you have about what you understand thermally-induced stresses are. What comes to your mind when someone says that out of the nine elements of the [stress tensor](https://en.wikipedia.org/wiki/Cauchy_stress_tensor) ([@sec:tensor]) there are only six that are independent? Whatever it is, try to practice that kind of graphical thoughts with every new concept. Nevertheless, there will be particular locations of the text where imagination will be most useful. I will bring the subject up then and again.

Another heads up is that we will be digging into some mathematics. Probably they would be simple and you would deal with them very easily. But chances are you do not like equations. No problem! Just ignore them for now. Read the text skipping them, it should work as well.
Łukasz Skotny says [you do not need to know maths to perform finite-element analysis](https://enterfea.com/math-behind-fea/). And he is right, in the sense that you do not need to know thermodynamics to drive a car. It is fine to ignore maths for now.
But, eventually, a time will come in which it cannot (or should not) be avoided. If you want to go to space, you will definitely have to learn thermodynamics.

So here comes another experience tip: do not fear equations. Even more, keep exercising. You have used [differences of squares](https://en.wikipedia.org/wiki/Difference_of_two_squares) in high school, didn’t you?. You know (or at least knew) how to [integrate by parts](https://en.wikipedia.org/wiki/Integration_by_parts). Do you remember what [Laplace transforms](https://en.wikipedia.org/wiki/Laplace_transform) are used for? Once in a while, perform a division of polynomials using [Ruffini’s rule](https://en.wikipedia.org/wiki/Ruffini's_rule). Or compute the second [derivative of the quotient of two functions](https://en.wikipedia.org/wiki/Quotient_rule). Whatever. It should be like doing crosswords on the newspaper. Grab those old physics college books and read the exercises at the end of each chapter. It will pay off later on.
Another heads up is that we will be digging into some mathematics. Probably they would be simple and you would deal with them very easily. But chances are you do not like equations. No problem! Just ignore them for now. Read the text skipping them, it should work as well.
Anyhow, here comes another experience tip: keep exercising mathematics. You have used [differences of squares](https://en.wikipedia.org/wiki/Difference_of_two_squares) in high school, didn’t you?. You know (or at least knew) how to [integrate by parts](https://en.wikipedia.org/wiki/Integration_by_parts). Do you remember what [Laplace transforms](https://en.wikipedia.org/wiki/Laplace_transform) are used for? Once in a while, perform a division of polynomials using [Ruffini’s rule](https://en.wikipedia.org/wiki/Ruffini's_rule). Or compute the second [derivative of the quotient of two functions](https://en.wikipedia.org/wiki/Quotient_rule). Whatever. It should be like doing crosswords on the newspaper. Grab those old physics college books and solve the exercises at the end of each chapter. All the effort will pay off later on.

One final comment: throughout the text I will be referring to “your favourite FEM program.” I bet you do have one. Mine is [CAEplex](https://caeplex.com) (it works on top of [Fino](https://www.seamplex.com/fino)). We will be using it to perform some tests and play a little bit. And we will also use it to think about what it means to use a FEM program to generate results that will eventually end up in a written project with your signature. Keep that in mind.
One final comment: throughout the text I will be referring to “your favourite FEM program.” I bet you do have one. Mine is [CAEplex](https://caeplex.com) (it works on top of [Fino](https://www.seamplex.com/fino), which is free and open source). We will be using it to perform some tests and play a little bit. And we will also use it to think about what it means to use a FEM program to generate results that will eventually end up in a written project with your signature. Keep that in mind.


## Case study: reactors, pipes and fatigue {#sec:case}
@@ -67,8 +65,6 @@ In the years following [Enrico Fermi](https://en.wikipedia.org/wiki/Enrico_Fermi

After further years passed by, engineers (probably the same people that forked section\ III) noticed that fatigue in nuclear power plants was not exactly the same as in other piping systems. There were some environmental factors directly associated to the power plant that were not taken into account by the regular ASME code. Again, instead of writing a new code from scratch, people decided to add correction factors to the previously-amended body of knowledge. This is how (sometimes) knowledge evolves, and it is this kind of complexities that engineers are faced with during their professional lives. We have to admit it, it would be a very difficult task to re-write everything from scratch every time something changes.

Actually, this article does not focus on a single case study but on some general ideas regarding analysis of fatigue in piping systems in nuclear power plants. There is no single case study but a compendium of ideas obtained by studying many different systems which are directly related to the safety of a real nuclear reactor.

![Three-dimensional CAD model for the piping system of\ [@fig:isometric]](real-piping.png){#fig:real-life width=75%}

### Nuclear reactors
@@ -98,7 +94,7 @@ For the case study, as the loads come principally from operational loads, the AS

![A fatigue or $S$-$N$ curve for two steels.](SN.svg){#fig:SN width=75%}

It should be noted that the fatigue curves are obtained in a particular load case, namely purely-periodic and one-dimensional, which cannot be directly generalised to other three-dimensional cases. Also, any real-life case will be subject to a mixture of complex cycles given by a stress time history and not to pure periodic conditions. The application of the curve data implies a set of simplifications and assumptions that are translated into different possible “rules” for composing real-life cycles. There also exist two safety factors which increase the stress amplitude and reduce the number of cycles respectively. All these intermediate steps render the analysis of fatigue into a conservative computation scheme ([@sec:kinds]). Therefore, when a fatigue assessment performed using the fatigue curve method arrives at the conclusion that “fatigue is expected to occur after ten thousand cycles” what it actually means is “we are sure fatigue will not occur before ten thousand cycles, yet it may not occur before one hundred thousand or even more.”
It should be noted that the fatigue curves are obtained in a particular load case, namely purely-periodic and one-dimensional, which cannot be directly generalised to other three-dimensional cases. Also, any real-life case will be subject to a mixture of complex cycles given by a stress time history and not to pure periodic conditions. The application of the curve data implies a set of simplifications and assumptions that are translated into different possible “rules” for composing real-life cycles. There also exist two safety factors which increase the stress amplitude and reduce the number of cycles respectively. All these intermediate steps render the analysis of fatigue into a conservative computation scheme. Therefore, when a fatigue assessment performed using the fatigue curve method arrives at the conclusion that “fatigue is expected to occur after ten thousand cycles” what it actually means is “we are sure fatigue will not occur before ten thousand cycles, yet it may not occur before one hundred thousand or even more.”

## Solid mechanics, or what we are taught at college

@@ -142,7 +138,10 @@ What does this all have to do with mechanical engineering? Well, once we know wh

### An infinitely-long pressurised pipe {#sec:infinite-pipe}

Let us proceed to our second step, and consider the infinite pipe subject to uniform internal pressure already introduced in\ [@fig:infinite-pipe]. Actually, we are going to solve the mechanical problem on an infinite hollow cylinder, which looks like pipe. This case is usually tackled in college courses, and chances are you already solved it. In fact, the first (and simpler) problem is the “thin cylinder problem.” Then, the “thick cylinder problem” is introduced (the one we solve below), which is slightly more complex. Nevertheless, it has an analytical solution which is derived [here](https://www.seamplex.com/fino/doc/pipe-linearized/). For the present case, let us consider an infinite pipe (i.e. a hollow cylinder) of internal radius $a$ and external radius $b$ with uniform mechanical properties---Young’s modulus $E$ and Poisson’s ratio $\nu$---subject to an internal uniform pressure $p$.
Let us proceed to our second step, and consider the infinite pipe subject to uniform internal pressure already introduced in\ [@fig:infinite-pipe]. Actually, we are going to solve the mechanical problem on an infinite hollow cylinder, which looks like pipe. This case is usually tackled in college courses, and chances are you already solved it. In fact, the first (and simpler) problem is the “thin cylinder problem.” Then, the “thick cylinder problem” is introduced (the one we solve below), which is slightly more complex. Nevertheless, it has an [analytical solution](https://www.seamplex.com/fino/doc/pipe-linearized/). For the present case, let us consider an infinite pipe (i.e. a hollow cylinder) of internal radius $a$ and external radius $b$ with uniform mechanical properties---Young’s modulus $E$ and Poisson’s ratio $\nu$---subject to an internal uniform pressure $p$.

What follows is more or less what we are taught in school: some equations with a brief explanation of the results. And then we move on to the next subject.


#### Displacements

@@ -159,7 +158,7 @@ Remember that when any solid body is subject to external forces, it has to react
What does this mean? Well, that overall the whole pipe expands a little bit radially with the inner face being displaced more than the external surface (use your imagination!). How much?

1. linearly with the pressure, i.e. twice the pressure means twice the displacement, and
2. inversely proportional to the Young Modulus\ $E$ divided by $1+\nu$, i.e. the more resistant the material, the less radial displacements.
2. inversely proportional to the Young’s Modulus\ $E$ divided by $1+\nu$, i.e. the more resistant the material, the less radial displacements.

That is how an infinite pipe withstands internal pressure.

@@ -183,9 +182,9 @@ We can note that
That is all what we can say about an infinite pipe with uniform material properties subject to an uniform internal pressure\ $p$. If

* the pipe was not infinite (say any real pipe that has to start and end somewhere), or
* the cross-section of the pipe is not constant along the axis (say there is an elbow or even a reduction), or
* the cross-section of the pipe was not constant along the axis (say there is an elbow or even a reduction), or
* there was more than one pipe (say there is a tee), or
* the material properties are not uniform (say the pipe does not have an uniform temperature but a distribution), or
* the material properties were not uniform (say the pipe does not have an uniform temperature but a distribution), or
* the pressure was not uniform (say because there is liquid inside and its weight cannot be neglected),

\noindent then we would no longer be able to fully solve the problem with paper and pencil and draw all the conclusions above. However, at least we have a start because we know that if the pipe is finite but long enough or the temperature is not uniform but almost, we still can use the analytical equations as approximations. After all, [Enrico Fermi](https://en.wikipedia.org/wiki/Enrico_Fermi) managed to reach criticality in the [Chicago Pile-1](https://en.wikipedia.org/wiki/Chicago_Pile-1) with paper and pencil. But what happens if the pipe is short, there are branches and temperature changes like during a transient in a nuclear reactor? Well, that is why we have finite elements. And this is where what we learned at college pretty much ends.
@@ -196,6 +195,7 @@ That is all what we can say about an infinite pipe with uniform material propert

Besides infinite pipes (both thin and thick), spheres and a couple of other geometries, there are no other cases for which we can obtain analytical expressions for the elements of the stress tensor. To get results for a solid with real engineering interest, we need to use numerical methods to solve the equilibrium equations. It is not that the equations are hard _per se_. It is that the mechanical parts we engineers like to design (which are of course more complex than cylinders and spheres) are so intricate that render simple equations into monsters which are unsolvable with pencil and paper. Hence, finite elements enter into the scene.


### The name of the game {#sec:formulations}

But before turning our attention directly into finite elements (and leaving college, at least undergraduate) it is worth some time to think about other alternatives. Are we sure we are tackling your problems in the best possible way? I mean, not just engineering problems. Do we take a break, step back for a while and see the whole picture looking at all the alternatives so we can choose the best cost-effective one?
@@ -233,6 +233,7 @@ Before proceeding, I would like to make two comments about common nomenclature.

The second one is more philosophical and refers to the word “simulation” which is often used to refer to solving a problem using a numerical scheme such as the finite element method. [I am against at using this word for this endeavour](https://www.seamplex.com/blog/say-modeling-not-simulation.html). The term simulation has a connotation of both “pretending” and “faking” something, that is definitely not what we are doing when we solve an engineering problem with finite elements. Sure, there are some cases in which we simulate, such as using the [Monte Carlo method](https://en.wikipedia.org/wiki/Monte_Carlo_method) (originally used by Fermi as an attempt to understand how neutrons behave in the core of nuclear reactors). But when solving deterministic mechanical engineering problems I would rather say “modelling” than “simulation.”

divert(-1)
### Kinds of finite elements {#sec:kinds}

This section is not (just) about different kinds of elements like tetrahedra, hexahedra, pyramids and so on. It is about the different kinds of analysis there are. Indeed, there is a whole plethora of particular types of calculations we can perform, all of which can be called “finite element analysis.” For instance, for the mechanical problem, we can have different kinds of
@@ -244,7 +245,6 @@ This section is not (just) about different kinds of elements like tetrahedra, he

And then there exist different pre-processors, meshers, solvers, pre-conditioners, post-processing steps, etc. A similar list can be made for the [heat conduction problem](https://en.wikipedia.org/wiki/Thermal_conduction), [electromagnetism](https://en.wikipedia.org/wiki/Electromagnetism), the [Schröedinger equation](https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation), [neutron transport](https://en.wikipedia.org/wiki/Neutron_transport), etc. But there is also another level of “kind of problem,” which is related to how much accuracy and precision we are to willing sacrifice in order to have a (probably very much) simpler problem to solve. Again, there are different combinations here but a certain problem can be solved using any of the following three approaches, listed in increasing amount of difficulty and complexity: conservative, best-estimate or probabilistic.

divert(-1)
The first one is the easiest because we are allowed to choose parameters and to make engineering decisions that may simplify the computation as long as they give results towards the worst-case scenario. More often than not, a conservative _estimation_ is enough in order to consider a problem as solved. Note that this is actually how fatigue results are obtained using fatigue curves, as discussed in\ [@sec:fatigue]. A word of care should be taken when considering what the “worst-case scenario” is. For instance, if we are analysing the temperature distribution in a mechanical part subject to convection boundary conditions, we might take either a very large or a very low convection coefficient as the conservative case. If we needed to design fins to dissipate heat then a low coefficient would be the conservative choice. But if the mechanical properties deteriorated with high temperatures then the conservative way to go would be to set a high convection coefficient. A common practice is to have a fictitious set of parameters, each of them being conservative leading individually to the worst case even if the overall combination is not physically feasible.

As neat and tempting as conservative computations may be, sometimes the assumptions may be too biased toward the bad direction and there might be no way of justifying certain designs with conservative computations. It is then time to sharpen our pencils and perform a best-estimate computation. This time, we should stick to the most-probable values of the parameters and even use more complex models that can better represent the physical phenomena that are going on in our problem. Sometimes best-estimate computations are just slightly more complex than conservative models. But more often than not, best-estimates get far more complicated. And these complications come not just in the finite-element model of the elastic problem but in the dependence of properties with space, time and/or temperature, in non-trivial relationships between macro and microscopic parameters, in more complicated algorithms for post-processing data, etc.
@@ -256,11 +256,9 @@ Finally, when then uncertainties associated to the parameters, methods and model
3. combining all the results into to obtain a best-estimate value plus uncertainty.

This kind of computation is usually required by the nuclear regulatory authorities when power plant designers need to address the safety of the reactors. What is the heat capacity of uranium above 1000ºC? What is the heat transfer coefficient when approaching the [critical heat flux](https://en.wikipedia.org/wiki/Critical_heat_flux) before the [Leidenfrost effect](https://en.wikipedia.org/wiki/Leidenfrost_effect) occurs? A certain statistical analysis has to be done prior to actually parametrically sweeping (see\ [@sec:parametric]) the input parameters so as to obtain a distribution of possible outcomes.
divert(0)

We might get into a an infinite taxonomic loop if we continue down this path. So let us move one step closer to our case study in this journey from college theory to an actual engineering problem.

divert(-1)
### Five whys {#sec:five}

So we know we need a numerical scheme to solve our mechanical problem because anything slightly more complex than an infinite pipe does not have analytical solution. We need an unstructured grid because we would not use Legos to discretise cylindrical pipes. We selected the finite elements method over the finite volumes method, because FEM is the king. Can we pause again and ask ourselves why is it that we want to do finite-element analysis?
@@ -291,7 +289,7 @@ You get the point, even though we know thanks to [Richard Feynmann](https://en.w

\medskip

Getting back to the case study: do we need to do FEM analysis? Well, it does not look like we can obtain the stresses of the transient cycles with just pencil and paper. But how much complexity should we add? We might do as little as axisymmetric linear steady-state conservative studies or as much as full three-dimensional non-linear transient best-estimate plus uncertainties computations. And here is where good engineers stand out: in putting their engineering judgment (call it experience or hunches) into defining _what_ to solve. And it is not (just) because the first option is faster to solve than the latter. Involving many complex methods need more engineering time
Getting back to the case study: do we need to do FEM analysis? Well, it does not look like we can obtain the stresses of the transient cycles with just pencil and paper. But how much complexity should we add? We might do as little as axisymmetric linear steady-state conservative studies or as much as full three-dimensional non-linear transient best-estimate plus uncertainties computations. And here is where good engineers stand out: in putting their engineering judgement (call it experience or hunches) into defining _what_ to solve. And it is not (just) because the first option is faster to solve than the latter. Involving many complex methods need more engineering time

1. to prepare the input data and set up the algorithms,
2. to cope with the many more mistakes that will inevitable appear during the computation, and
@@ -313,7 +311,7 @@ So we need to address the issue of fatigue in nuclear reactor pipes that
c. seismic loads.

dnl As I wanted to illustrate in [@sec:five], it is very important to decide what kind of problem (actually problems) we should be dealing with.
As a nuclear engineer, I learned (theoretically in college but practically after college) that there are some models that let you see some effects and some that let you see other effects (please [say “modelling” not “simulation.”](https://www.seamplex.com/blog/say-modeling-not-simulation.html)). And even if, in principle, it is true that more complex models should let you see more stuff, they definitely might show you nothing at all if the model is so big and complex that it does not fit into a computer (say because it needs hundreds of gigabytes of RAM to run) or because it takes more time to compute than you may have before the final report is expected.
As a nuclear engineer, I learned (theoretically in college but practically after college) that there are some models that let you see some effects and some that let you see other effects (please [say “modelling” not “simulation.”](https://www.seamplex.com/blog/say-modeling-not-simulation.html)). And even if, in principle, it is true that more complex models should allow you compute more stuff, they definitely might show you nothing at all if the model is so big and complex that it does not fit into a computer (say because it needs hundreds of gigabytes of RAM to run) or because it takes more time to compute than you may have before the final report is expected.

First of all, we should note that we need to solve

@@ -373,7 +371,7 @@ dnl ![Temperature distribution for a certain time within the transient computed

### Seismic loads {#sec:seismic}

Before considering the actual mechanical problem that will give us the stress tensor at the SCLs, and besides needing to solve the transient thermal problem to get the temperature distributions, we need to address the loads that arise due to a postulated earthquake during a certain part of the operational transients. The full computation of a mechanical transient problem using the earthquake time-dependent displacements is off the table for two reasons. First, because again the computation would take more time than we might have to deliver the report. And secondly and more importantly, because civil engineers do not compute earthquakes in the time domain but in the frequency domain using the [response spectrum method](https://en.wikipedia.org/wiki/Response_spectrum). Time to revisit our [Fourier transform](https://en.wikipedia.org/wiki/Fourier_transform) exercises from undergraduate math courses.
Before considering the actual mechanical problem that will give us the stress tensor at the SCLs, and besides needing to solve the transient thermal problem to get the temperature distributions, we need to address the loads that arise due to a postulated earthquake during a certain part of the operational transients. The full computation of a mechanical transient problem using the earthquake time-dependent displacements is off the table for two reasons. First, because again the computation would take more time than we might have to deliver the report. And secondly and more importantly, because civil engineers do not compute earthquakes in the time domain but in the frequency domain using the [response spectrum method](https://en.wikipedia.org/wiki/Response_spectrum), provided the case is linear (see\ [@sec:linearity]). Time to revisit our [Fourier transform](https://en.wikipedia.org/wiki/Fourier_transform) exercises from undergraduate math courses.

#### Earthquake spectra

@@ -397,22 +395,25 @@ Practically, these problems are solved using the same mechanical finite-element
1. The computation of the natural frequencies is “load free”, i.e. there can be no surface nor volumetric loads, and
2. The displacement boundary conditions ought to be homogeneous, i.e. only displacements equal to zero can be given. We may fix only one of the three degrees of freedom in certain surfaces and leave the others free, as long as all the rigid body motions are removed as usual.

A real continuous solid has infinite modes of oscillation. A discretised one (using the most common and efficient FEM formulation, the [displacement-based formulation](http://web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf)) has three times the number of nodes modes. In any case, one is usually interested only in a few of them, namely those with the lower frequencies because they take away most of the energy with them. Each mode has two associated parameters called modal mass and excitation that reflect how “important” the mode is regarding the absorption of energy from an external oscillatory source. Usually a couple of dozens of modes are enough to take up more than 90% of the earthquake energy. Figure\ [-@fig:modes] shows the first six natural modes of a sample piping section.
A real continuous solid has infinite modes of oscillation. A discretised one (using the most common and efficient FEM formulation, the [displacement-based formulation](http://web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf)) has three times the number of nodes modes. In any case, one is usually interested only in a few of them, namely those with the lower frequencies because they take away most of the energy with them. Each mode has two associated parameters called modal mass and excitation that reflect how “important” the mode is regarding the absorption of energy from an external oscillatory source. Usually a couple dozens of modes are enough to take up more than 90% of the earthquake energy as illustrated by\ [@fig:acumulada].

![Effective accumulated mass fraction up to the $i$-th mode of oscillation.](acumulada.svg){#fig:acumulada}

::::: {#fig:modes}
![](mode1.png){width=48%}\
![](mode2.png){width=48%}
![$f_1 \approx 30$\ [Hz](https://www.seamplex.com/docs/nafems4/mode1.webm)](mode1.png){width=48%}\
![$f_2 \approx 60$\ [Hz](https://www.seamplex.com/docs/nafems4/mode2.webm)](mode2.png){width=48%}

![](mode3.png){width=48%}\
![](mode4.png){width=48%}
![$f_3 \approx 70$\ [Hz](https://www.seamplex.com/docs/nafems4/mode3.webm)](mode3.png){width=48%}\
![$f_4 \approx 75$\ [Hz](https://www.seamplex.com/docs/nafems4/mode5.webm)](mode4.png){width=48%}

![](mode5.png){width=48%}\
![](mode6.png){width=48%}
![$f_5 \approx 100$\ [Hz](https://www.seamplex.com/docs/nafems4/mode5.webm)](mode5.png){width=48%}\
![$f_6 \approx 130$\ [Hz](https://www.seamplex.com/docs/nafems4/mode6.webm)](mode6.png){width=48%}

First six natural oscillation modes for a piping section
First six natural oscillation modes for a piping section between axial supports. Blue-red color scale shows magnitude of deformation, as compared to the original geometry (grey). Animations can be seen at links like <https://www.seamplex.com/docs/nafems4/mode1.webm>.
:::::

These first modes that take up most of the energy are then used to take into account the earthquake load. There are several ways of performing this computation, but the ASME\ III code states that the method known as SRSS (for Square Root of Sum of Squares) can be safely used. This method mixes the eigenvectors with the floor response spectra through the eigenvalues and gives a spatial (actually nodal) distribution of three accelerations (one for each direction) that, when multiplied by the density of the material, give a vector of a distributed force (in units of Newton per cubic millimetre for example) which is statically equivalent to the load coming from the postulated earthquake.

These first modes, shown in\ [@fig:modes], that take up most of the energy are then used to take into account the earthquake load. There are several ways of performing this computation, but the ASME\ III code states that the method known as SRSS (for Square Root of Sum of Squares) can be used. This method mixes the eigenvectors with the floor response spectra through the eigenvalues and gives a spatial (actually nodal) distribution of three accelerations (one for each direction) that, when multiplied by the density of the material, give a vector of a distributed force (in units of Newton per cubic millimetre for example) which is statically equivalent to the load coming from the postulated earthquake.

::::: {#fig:acceleration}
![$a_x$](ax.png){width=80%}
@@ -424,18 +425,18 @@ These first modes that take up most of the energy are then used to take into acc
The equivalent accelerations for the piping section of [@fig:modes] for the spectra of\ [@fig:spectrum]
:::::

The ASME code says that these accelerations (depicted in [@fig:acceleration]) ought to be applied twice: once with the original sign and once with all the elements with the opposite sign, as SRSS “looses signs.” The application of each of these equivalent loads application should last two seconds in the original time domain.
The ASME code says that these accelerations (depicted in [@fig:acceleration]) ought to be applied twice: once with the original sign and once with all the elements with the opposite sign, as SRSS “looses signs.” The application of each of these equivalent loads should last two seconds in the original time domain.


### Linearity (not yet linearisation) {#sec:linearity}

Even though we did not yet discuss it in detail, we want to solve an elastic problem subject to an internal pressure condition, with a non-uniform temperature distribution that leads to both thermal stresses and variations in the mechanical properties of the materials. And as if this was not enough, we want to add during a couple of seconds a statically-equivalent distributed load arising from a design earthquake. This last point means that at the transient instant where the stresses (from the fatigue’s point of view) are maximum we have to add the distributed loads that we computed from the seismic spectra to the other thermal and pressure loads. But we have a linear elastic problem (well, we still do not have it but we will in\ [@sec:break]), so we might be tempted to exploit the problem’s linearity and compute all the effects separately and then sum them up to obtain the whole combination. We may thus compute just the stresses due to the seismic loads and then add these stresses to the stresses at any time of the transient, in particular to the one with the highest ones. After all, in linear problems the result of the sum of two cases is the result of the sum of the cases, right? Not always.

Let us jump out of our nuclear piping problem and step back into the general finite-element theory ground for a moment (remember we were going to jump back and forth). Assume you want to know how much your dog weights. One thing you can do is to weight yourself (let us say you weight 81.2\ kg), then to grab your dog and to weight both yourself and your dog (let us say you and your dog weight 87.3\ kg). Do you swear your dog weights 6.1\ kg plus/minus the scale’s uncertainty? I can tell you that the weight of two individual protons and two individual neutrons in not the same as the weight of an\ [$\alpha$ particle](https://en.wikipedia.org/wiki/Alpha_particle). Would not there be a master-pet interaction that renders the weighting problem non-linear?
Let us jump out of our nuclear piping problem and step back into the general finite-element theory ground for a moment (remember we were going to jump back and forth). Assume you want to know how much your dog weighs. One thing you can do is to weigh yourself (let us say you weigh 81.2\ kg), then to grab your dog and to weigh both yourself and your dog (let us say you and your dog weigh 87.3\ kg). Would you swear your dog weighs 6.1\ kg plus/minus the scale’s uncertainty? I can tell you that the weight of two individual protons and two individual neutrons in not the same as the weight of an\ [$\alpha$ particle](https://en.wikipedia.org/wiki/Alpha_particle). Would not there be a master-pet interaction that renders the weighting problem non-linear?

\medskip

Time for both of us to make an experiment. Grab your favourite FEM program for the first time (remember mine is [CAEplex](https://caeplex.com)) and create a 1mm $\times$ 1mm $\times$ 1mm cube. Set any values for the Young Modulus and Poisson ratio as you want. I chose\ $E=200$\ GPa and\ $\nu=0.28$. Restrict the three faces pointing to the negative axes to their planes, i.e.
Time for both of us to make an experiment. Grab your favourite FEM program for the first time (remember mine is [CAEplex](https://caeplex.com)) and create a 1mm $\times$ 1mm $\times$ 1mm cube. Set any values for the Young’s Modulus and Poisson ratio as you want. I chose\ $E=200$\ GPa and\ $\nu=0.28$. Restrict the three faces pointing to the negative axes to their planes, i.e.

* in face “left” ($x<0$), set null displacement in the $x$ direction ($u=0$),
* in face “front” ($y<0$), set null displacement in the $y$ direction ($v=0$),
@@ -443,9 +444,9 @@ Time for both of us to make an experiment. Grab your favourite FEM program for t

Now we are going to create and compare three load cases:

a. Pure normal loads (<https://caeplex.com/p?d8f>)
b. Pure shear loads (<https://caeplex.com/p?b494>)
c. The combination of A & B (<https://caeplex.com/p?989>)
a. Pure normal loads (<https://caeplex.com/p/d8f>)
b. Pure shear loads (<https://caeplex.com/p/b494>)
c. The combination of A & B (<https://caeplex.com/p/989>)

The loads in each cases are applied to the three remaining faces, namely “right” ($x>0$), “back” ($y>0$) and “top,” ($z>0$). Their magnitude in Newtons are:

@@ -549,15 +550,15 @@ The moral of this fable is that if we have a case that is the combination of two

After discussing linearity, let us now dig into linearisation. The name is similar but these two animals are very different beasts. We said in\ [@sec:case] that the ASME Boiler and Pressure Vessel Code was born long before modern finite-elements methods were developed and of course being massively available for general engineering analysis (democratised?). Yet the code provides a comprehensive, sound and, more importantly, a widely and commonly-accepted body of knowledge as for the regulatory authorities to require its enforcement to nuclear plant owners. One of the main issues of the ASME code refers to what is known as “membrane” and “bending” stresses. These are defined in [section\ VIII](https://en.wikipedia.org/wiki/ASME_Boiler_and_Pressure_Vessel_Code#ASME_BPVC_Section_VIII_-_Rules_for_Construction_of_Pressure_Vessels) annex 5-A, although they are widely used in other sections, particularly [section\ III](https://en.wikipedia.org/wiki/ASME_Boiler_and_Pressure_Vessel_Code#ASME_BPVC_Section_III_-_Rules_for_Construction_of_Nuclear_Facility_Components). Briefly, they give the zeroth-order (membrane) and first-order (bending) [moments](https://en.wikipedia.org/wiki/Moment_(mathematics)) (in the statistical sense) of the stress distribution along a so-called Stress Classification Line or SCL, which should be chosen depending on the type of problem under analysis.

The computation of these membrane and bending stresses are called [“stress linearisation”](https://www.ramsay-maunder.co.uk/knowledge-base/technical-notes/stress-linearisation-for-practising-engineers/) because (I am guessing) it is like computing the [Taylor expansion](https://en.wikipedia.org/wiki/Taylor_series) (or for the case, expansion in [Legendre polynomials](https://en.wikipedia.org/wiki/Legendre_polynomials)) of an arbitrary stress distribution along a line, and retaining the first two terms. That is to say, to obtain a linear approximation. More (optional) mathematical details below.
The computation of these membrane and bending stresses are called [“stress linearisation”](https://www.ramsay-maunder.co.uk/knowledge-base/technical-notes/stress-linearisation-for-practising-engineers/) because it is like computing the [Taylor expansion](https://en.wikipedia.org/wiki/Taylor_series) (or for the case, expansion in [Legendre polynomials](https://en.wikipedia.org/wiki/Legendre_polynomials)) of an arbitrary stress distribution along a line, and retaining the first two terms. That is to say, to obtain a _linear approximation_. There are physical interpretations for both membrane and bending stresses, which are beyond the scope of this chapter. As for the ASME requirements, they are a way of having the mean and linear contributions of a certain stress distribution along the pipe’s wall thickness.


So what about the SCLs? Well, the ASME standard says that they are lines that go through a wall of the pipe (or vessel or pump, which is what the ASME code is for) from the inside to the outside and ought to be normal to the iso-stress curves. Stop. Picture yourself a stress field, draw the iso-stress curves (those would be the lines that have the same colour in your picture) and then imagine a set of lines that travel in a perpendicular direction to them. Finally, choose the one that seems the prettiest (which most of the time is the one that seems the easiest). There you go! You have an SCL. But there is a catch. So far, we have referred to a generic concept of “stress.” Which of the several stresses out there should you picture? One of the three normals, the three shear, Von\ Mises, Tresca? Well, actually you will have to imagine tensors instead of scalars. And there might not be such a thing as “iso-stress” curves, let alone normal directions. So pick any radial straight line through the pipe wall at a location that seems relevant and now you are done. In our case study, there will be a few different locations around the material interfaces where high stresses due to differential thermal expansion are expected to occur.
So what about the SCLs? Well, the ASME standard says that they are lines that go through a wall of the pipe (or vessel or pump, which is what the ASME code is for) from the inside to the outside and ought to be normal to the iso-stress curves. Stop. Picture yourself a stress field, draw the iso-stress curves (those would be the lines that have the same colour in your picture) and then imagine a set of lines that travel in a perpendicular direction to them. Finally, choose the one that seems the prettiest (which most of the time is the one that seems the easiest). There you go! You have an SCL. But there is a catch. So far, we have referred to a generic concept of “stress.” Which of the several stresses out there should you picture? One of the three normals, the three shear, Von\ Mises, Tresca? Well, actually you will have to imagine tensors instead of scalars. And there might not be such a thing as “iso-stress” curves, let alone normal directions. So pick any radial straight line through the pipe wall at a location that seems relevant and now you are done. In our case study, there will be a few different locations around the material interfaces where high stresses due to differential thermal expansion are expected to occur. Just keep this though with you: it is very important to define where the SCLs are located, as they will define the “quality” of the obtained results.

divert(-1)
\medskip

Now the optional (but recommended) mathematical details. Accoding to ASME\ VIII Div.\ 2 Annex\ 5-A, the expression for computing the $i$-$j$-th element of the membrane tensor is
Now the optional (but recommended) mathematical details. According to ASME\ VIII Div.\ 2 Annex\ 5-A, the expression for computing the $i$-$j$-th element of the membrane tensor is

$$
\text{M}_{ij} = \frac{1}{t} \cdot \int_0^t \sigma_{ij}(t^\prime) \, dt^\prime
@@ -573,7 +574,7 @@ For the fatigue assessment, it is the sum\ $\text{MB}$ that measures the stress
$$
\text{MB}_{ij} = \text{M}_{ij} \pm \text{B}_{ij}
$$
where the sign should be taken such that the resulting stress intensity (i.e. Tresca, Von Mises, Principal\ 1, etc.) represents the worst-case scenario. Older versions of ASME\ VIII preferred the [Tresca criterion](https://en.wikipedia.org/wiki/Henri_Tresca), while newer versions switched to [Von\ Mises](https://en.wikipedia.org/wiki/Von_Mises_yield_criterion). ASME\ III sticked to Tresca.
where the sign should be taken such that the resulting stress intensity (i.e. Tresca, Von Mises, Principal\ 1, etc.) represents the worst-case scenario. Older versions of ASME\ VIII preferred the [Tresca criterion](https://en.wikipedia.org/wiki/Henri_Tresca), while newer versions switched to [Von\ Mises](https://en.wikipedia.org/wiki/Von_Mises_yield_criterion). Nevertheless, ASME\ III still uses Tresca.

In any case, $\text{MB}_{ij}$ should be taken as a measure of the primary stress at the internal surface of the pipe. In effect, let us assume we have a stress distribution\ $\sigma(t^\prime)$ along a certain line of length $t$ such that\ $\sigma(0)$ and $\sigma(t)$ are the stresses at the internal and external surfaces, respectively. The primary stress distribution, i.e. the stress that is not self balancing will be of the simple linear form

@@ -606,7 +607,7 @@ divert(0)

## The infinite pipe revisited after college {#sec:infinite-pipe-fem}

Let us now make a (tiny) step from the general and almost philosophical subject from the last section down to the particular case study, and reconsider the infinite pressurised pipe once again. It is time to solve the problem with a computer using finite elements and to obtain some funny coloured pictures instead of just equations.
Let us now make a (tiny) step from the general and almost philosophical subject from the last section down to the particular case study, and reconsider the infinite pressurised pipe once again. It is time to solve the problem with a computer using finite elements and to obtain some funny coloured pictures instead of just equations (like we did in [@sec:infinite-pipe]).

The first thing that has to be said is that, as with any interesting problem, there are literally hundreds or different ways of solving it, each of them throwing particular conclusions. For example, one can:

@@ -654,15 +655,15 @@ dnl * The finite-element results for the displacements are similar to the analyt
Error in the computation of the linearised stresses vs. CPU time needed to solve the infinite pipe problem using the finite element method
:::::

An additional note should be added. The FEM solution, which not only gives the nodal displacements but also a method to interpolate these values inside the elements, does not fully satisfy the original equilibrium equations at every point (i.e. the strong formulation). It is an approximation to the solution of the [weak formulation](https://en.wikipedia.org/wiki/Weak_formulation) that is close (measured in the vector space spanned by the [shape functions](https://www.quora.com/What-is-a-shape-function-in-FEM)) to the real solution. Mechanically, this means that the FEM solution leads only to nodal equilibrium but not pointwise equilibrium.
An additional note should be added. The FEM solution, which not only gives the nodal displacements but also a method to interpolate these values inside the elements, does not fully satisfy the original equilibrium equations at every point (i.e. the strong formulation). It is an approximation to the solution of the [weak formulation](https://en.wikipedia.org/wiki/Weak_formulation) that is close (measured in the vector space spanned by the [shape functions](https://www.quora.com/What-is-a-shape-function-in-FEM)) to the real solution. Mechanically, this means that the FEM solution leads only to nodal equilibrium but not point-wise equilibrium.

### Elements, nodes and CPU {#sec:elements-nodes}

The last two bullets above lead to an issue that has come many times when discussing the issue of convergence with respect to the mesh size with other colleagues. There apparently exists a common misunderstanding that the number of elements is the main parameter that defines how complex a FEM model is. This is strange, because even in college we are taught that the most important parameter is the _size_ of the stiffness matrix, which is three times (for 3D problems with the [displacement-based formulation](http://web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf) formulation) the number of _nodes_.
dnl The last two bullets above lead to an issue that has come many times when discussing the issue of convergence with respect to the mesh size with other colleagues. There apparently exists a common misunderstanding that the number of elements is the main parameter that defines how complex a FEM model is. This is strange, because even in college we are taught that the most important parameter is the _size_ of the stiffness matrix, which is three times (for 3D problems with the [displacement-based formulation](http://web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf) formulation) the number of _nodes_.

Let us pretend we are given the task of comparing two different FEM programs. So we solve the same problem in each one and see what the results are. I have seen many times the following situation: the user loads the same geometry in both programs, run the meshing step in both of them so that the number of elements is more or less them same (because she wants to be “fair”) and then solves the problem. Voilà! It turns out that the first program defaults to first-order elements and the second one to second-order elements. So if the first one takes one minute to obtain a solution, the second one should take nearly four minutes. How come that is a fair comparison? Or it might be the case that one program uses tetrahedra while the other one defaults to hexahedra. Or any other combination. In general, there is no single problem parameter that can be fixed to have a “fair” comparison, but if there was, it would definitely be the number of _nodes_ rather than the number of _elements_. Let us see why.
dnl Let us pretend we are given the task of comparing two different FEM programs. So we solve the same problem in each one and see what the results are. I have seen many times the following situation: the user loads the same geometry in both programs, run the meshing step in both of them so that the number of elements is more or less them same (because she wants to be “fair”) and then solves the problem. Voilà! It turns out that the first program defaults to first-order elements and the second one to second-order elements. So if the first one takes one minute to obtain a solution, the second one should take nearly four minutes. How come that is a fair comparison? Or it might be the case that one program uses tetrahedra while the other one defaults to hexahedra. Or any other combination. In general, there is no single problem parameter that can be fixed to have a “fair” comparison, but if there was, it would definitely be the number of _nodes_ rather than the number of _elements_. Let us see why.

\medskip
dnl \medskip

Fire up your imagination again and make a [thought experiment](https://en.wikipedia.org/wiki/Thought_experiment) in which you have to compare say a traditional FEM approach with a new radical formulation that a crazy mathematician from central Asia came up with claiming it is a far superior theory than our beloved finite elements (or for the case, any other formulation from\ [@sec:formulations]). How can we tell if the guy is really a genius or purely nuts? Well, we could solve a problem which we can compute the analytical solution (for example the infinite pipe from\ [@sec:infinite-pipe]) first with the traditional method ([@sec:infinite-pipe-fem]) and then with the program which uses the new formulation. Say the traditional FEM gives an error between 1% and 5% running in a few seconds depending on the mesh size. The new program from the crazy guy takes no input parameters and gives an error of 0.1%, but it takes one week of computation to produce a result. Would you say that the new radical formulation is really far superior?

@@ -709,7 +710,7 @@ In a similar way, different types of elements will give rise to different sparsi

#### Stress computation {#sec:stress-computation}

In the [displacement-based formulation](http://web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf), the solver finds the displacements\ $\mathbf{u}(\mathbf{x})$ that satisfy [@eq:kub], which are the principal unknowns. But from\ [@sec:tensor] we know that we actually have solved the problem after we have the stress tensors at every location\ $\mathbf{x}$, which are the secondary unknowns. So the FEM program has to compute the stresses out of the displacements. It first computes the strain tensor, which is composed of the nine partial derivatives of the three displacements with respect to the three coordinates. Then it computes the stress tensor (atready introduced in\ [@sec:tensor]) using the materials’ [strain-stress constitutive equations](https://en.wikipedia.org/wiki/Constitutive_equation#Stress_and_strain) which involve the Young Modulus\ $E$, the Poisson ratio\ $\nu$ and the spatial derivatives of the displacements\ $\mathbf{u}=[u,v,w]$. This sounds easy, as we (well, the solver) knows what the shape functions are for each element and then it is a matter of computing nine derivatives and multiplying by something involving\ $E$ and\ $\nu$. Yes, but there is a catch. As the displacements\ $u$, $v$ and\ $w$ are computed at the nodes, we would like to also have the stresses at the nodes. However,
In the [displacement-based formulation](http://web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf), the solver finds the displacements\ $\mathbf{u}(\mathbf{x})$ that satisfy [@eq:kub], which are the principal unknowns. But from\ [@sec:tensor] we know that we actually have solved the problem after we have the stress tensors at every location\ $\mathbf{x}$, which are the secondary unknowns. So the FEM program has to compute the stresses out of the displacements. It first computes the strain tensor, which is composed of the nine partial derivatives of the three displacements with respect to the three coordinates. Then it computes the stress tensor (already introduced in\ [@sec:tensor]) using the materials’ [strain-stress constitutive equations](https://en.wikipedia.org/wiki/Constitutive_equation#Stress_and_strain) which involve the Young’s Modulus\ $E$, the Poisson ratio\ $\nu$ and the spatial derivatives of the displacements\ $\mathbf{u}=[u,v,w]$. This sounds easy, as we (well, the solver) knows what the shape functions are for each element and then it is a matter of computing nine derivatives and multiplying by something involving\ $E$ and\ $\nu$. Yes, but there is a catch. As the displacements\ $u$, $v$ and\ $w$ are computed at the nodes, we would like to also have the stresses at the nodes. However,

i. the displacements\ $\mathbf{u}(\mathbf{x})$ are not differentiable at the nodes, and
ii. if the node belongs to a material interface, neither\ $E$ nor\ $\nu$ are defined.
@@ -739,7 +740,7 @@ Let us review some issues that appear when solving our case study and that might

### Two (or more) materials {#sec:two-materials}

The main issue with fatigue in nuclear piping during operational transients is that at the welds between two materials with different thermal expansion coefficients there can appear potentially-high stresses during temperature changes. If these transients are repeated cyclically, fatigue may occur. We already have risen a warning flag about stresses at material interfaces in\ [@sec:two-materials]. Besides all the open questions about computing stresses at nodes, this case also adds the fact that the material properties (say the Young Modulus\ $E$) is different in the elements that are at each side of the interface.
The main issue with fatigue in nuclear piping during operational transients is that at the welds between two materials with different thermal expansion coefficients there can appear potentially-high stresses during temperature changes. If these transients are repeated cyclically, fatigue may occur. We already have risen a warning flag about stresses at material interfaces in\ [@sec:two-materials]. Besides all the open questions about computing stresses at nodes, this case also adds the fact that the material properties (say the Young’s Modulus\ $E$) is different in the elements that are at each side of the interface.

::::: {#fig:two-cubes}
![Surface grid showing the fixed face (magenta), the load face (green) and the shared face in the middle](two-cubes2.png){#fig:two-cubes2 width=48%}\
@@ -765,7 +766,7 @@ Faced with the problem of computing the stress\ $\sigma$ at one node shared by m
There might be other choices as well. Do you know what your favourite FEM program does? Now follow up with these questions:

a. Does the manual say?
b. Does it tell you the details like how it weights the averages?
b. Does it tell you the details like how it weighs the averages?
c. Does it discard values that are beyond a number of standard deviations away?
d. How many standard deviations?
e. ...
@@ -783,13 +784,13 @@ In effect, a couple of years ago Angus Ramsay noted [a weird behaviour](https://

> Do you trust your favourite FEM program?

Back to the two-material problem, all the discussion above in\ [@sec:two-materials] about non-continuous derivatives applies to a sharp abrupt interface. In the study case the junctions are welded so there is a [heat-affected zone](https://en.wikipedia.org/wiki/Heat-affected_zone) with changes in the material micro structure. Therefore, there exists a smooth transition from the mechanical properties of one material to the other one in a way that is very hard to predict and to model. In principle, the assumption of a sharp interface is conservative (in the sense of\ [@sec:kinds]). There cannot be an SCL exactly on a material interface so there should be at least two SCLs, one at each side of the junctions as\ [@fig:weldolet-scls] illustrates. The actual distance would have to be determined first as an educated guess, then via trial and error and finally in accordance with the regulator.
Back to the two-material problem, all the discussion above in\ [@sec:two-materials] about non-continuous derivatives applies to a sharp abrupt interface. In the study case the junctions are welded so there is a [heat-affected zone](https://en.wikipedia.org/wiki/Heat-affected_zone) with changes in the material micro structure. Therefore, there exists a smooth transition from the mechanical properties of one material to the other one in a way that is very hard to predict and to model. In principle, the assumption of a sharp interface is conservative in the sense that it is expected the computed stresses to be larger than the actual ones. There cannot be an SCL exactly on a material interface so there should be at least two SCLs, one at each side of the junctions as\ [@fig:weldolet-scls] illustrates. The actual distance would have to be determined first as an educated guess, then via trial and error and finally in accordance with the regulator.

divert(-1)
### A parametric tee {#sec:parametric}

Time for another experiment. We know (more or less) what to expect from an infinite pressurised pipe from\ [@sec:infinite-pipe] and [@sec:infinite-pipe-fem]. What if we added a branch to such pipe? Even more, what if we successively varied the diameter of the branch to see what happens? This is called parametric analysis, and sooner or later (if not now) you will find yourself performing this kind of computations more often than any other one.

divert(-1)
So here come the five Feynmann-Ohno questions:

1. Why do you want to perform a parametric computation?
@@ -806,7 +807,7 @@ So here come the five Feynmann-Ohno questions:

5. Why do you want to understand what is going on?
For the same reason you are now reading this chapter.
divert(0)

Let us solve the following mock-up case: a long main 12-inch schedule\ 80 pipe has an orthogonal branch of a certain nominal diameter of\ $d_b$\ inches (it seems that the [SI](https://en.wikipedia.org/wiki/International_System_of_Units) did not do well amongst the piping engineering community). Both the main line and the branch are pressurised with\ $p=10$\ MPa. The main pipe is aligned with the\ $x$ axis and the branch coincides with the\ $z$ axis. Thus, the $x$-$z$ plane acts as a symmetry plane and we only need to model two octants of the full geometry, as shown in\ [@fig:tee-geo]. Note that the tee is modelled as the boolean intersection of two cylinders. There are no filleted edges nor rounded corners or any other smoothing. A real CAD file containing the appropriate geometry needs to be built for the real case study.

@@ -835,11 +836,10 @@ Location of the three radial SCLs: cyan, yellow and green
:::::

::::: {#fig:tee-MB}
![Membrane stress](M.svg){#fig:M width=90%}
![Membrane stress](M.svg){#fig:M width=48%}\
![Bending stress](B.svg){#fig:B width=48%}

![Bending stress](B.svg){#fig:B width=90%}

Parametric membrane and bending stresses as a function of the nominal diameter\ $d_b$ of the branch
Parametric stresses as a function of the nominal diameter\ $d_b$ of the branch
:::::


@@ -861,10 +861,10 @@ Do you now see the added value of training throw-ins with watermelons? We might
* using distributed forces from earthquakes,
* etc.

Most of the time at college we would barely do what is needed to be approved in one course and move on to the next one. If you have the time and consider a career related to finite-element analysis, please do not. Clone the repository^[<https://bitbucket.org/seamplex/tee>] with the input files for [Fino](https://www.seamplex.com/fino) and start playing. If you are stuck, do not hesitate asking for help in [wasora’s mailing list](https://www.seamplex.com/lists.html).
Most of the time at college we would barely do what is needed to be approved in one course and move on to the next one. If you have the time and consider a career related to finite-element analysis, please do not. Clone the repository^[<https://github.com/seamplex/tee>] with the input files for [Fino](https://www.seamplex.com/fino) and start playing. If you are stuck, do not hesitate asking for help in [wasora’s mailing list](https://www.seamplex.com/lists.html).

One further detail: it is always a sane check to try to explain the numerical results based on physical reasoning (i.e. “with your fingers”) as we did two paragraphs above. Most of the time you will be solving problems whilst already knowing what the result would (or ought to) be.
divert(0)

### Bake, shake and break {#sec:break}

@@ -894,7 +894,7 @@ Is the last bullet right? [Surely you’re joking, Mr.\ Theler!](https://en.wiki

The first one is easy. Due to the fact that the pipes are made of steel, it is expected that the actual deformations are relatively small compared to the original dimensions. This leads to the fact that the mechanical rigidity (i.e. the stiffness matrix) does not change significantly when the loads are applied. Therefore, we can safely assume that the problem is geometrically linear.

Let us now address material non-linearities. On the one hand we have the temperature-dependent issue. According to ASME\ II part\ D, what depends on temperature\ $T$ is the Young Modulus\ $E$. But the stress-strain relationship is yet
Let us now address material non-linearities. On the one hand we have the temperature-dependent issue. According to ASME\ II part\ D, what depends on temperature\ $T$ is the Young’s Modulus\ $E$. But the stress-strain relationship is yet

$$ \sigma = E(T) \cdot \epsilon $$

@@ -930,22 +930,23 @@ Temperature distribution for a certain instant of the transient, computed in the
:::::

::::: {#fig:case-mode}
![](case-mode1.png){#fig:case-mode-1 width=30%}\
![](case-mode2.png){#fig:case-mode-2 width=30%}\
![](case-mode3.png){#fig:case-mode-3 width=30%}
![$f_1 \approx 60$\ [Hz](https://www.seamplex.com/docs/nafems4/case-mode1.webm)](case-mode1.png){#fig:case-mode-1 width=30%}\
![$f_1 \approx 130$\ [Hz](https://www.seamplex.com/docs/nafems4/case-mode2.webm)](case-mode2.png){#fig:case-mode-2 width=30%}\
![$f_1 \approx 200$\ [Hz](https://www.seamplex.com/docs/nafems4/case-mode3.webm)](case-mode3.png){#fig:case-mode-3 width=30%}

![](case-mode4.png){#fig:case-mode-4 width=30%}\
![](case-mode5.png){#fig:case-mode-5 width=30%}\
![](case-mode6.png){#fig:case-mode-6 width=30%}
![$f_1 \approx 270$\ [Hz](https://www.seamplex.com/docs/nafems4/case-mode4.webm)](case-mode4.png){#fig:case-mode-4 width=30%}\
![$f_1 \approx 330$\ [Hz](https://www.seamplex.com/docs/nafems4/case-mode5.webm)](case-mode5.png){#fig:case-mode-5 width=30%}\
![$f_1 \approx 560$\ [Hz](https://www.seamplex.com/docs/nafems4/case-mode6.webm)](case-mode6.png){#fig:case-mode-6 width=30%}

![](case-mode7.png){#fig:case-mode-7 width=30%}\
![](case-mode8.png){#fig:case-mode-8 width=30%}\
![](case-mode9.png){#fig:case-mode-9 width=30%}
![$f_1 \approx 660$\ [Hz](https://www.seamplex.com/docs/nafems4/case-mode7.webm)](case-mode7.png){#fig:case-mode-7 width=30%}\
![$f_1 \approx 730$\ [Hz](https://www.seamplex.com/docs/nafems4/case-mode8.webm)](case-mode8.png){#fig:case-mode-8 width=30%}\
![$f_1 \approx 930$\ [Hz](https://www.seamplex.com/docs/nafems4/case-mode9.webm)](case-mode9.png){#fig:case-mode-9 width=30%}

First nine natural modes of oscillation of the piping system subject to the boundary conditions the supports provide
First nine natural modes of oscillation of the piping system subject to the boundary conditions the supports provide.
Animations can be seen at links like <https://www.seamplex.com/docs/nafems4/case-mode1.webm>.
:::::

![Floor response spectrum.](case-spectrum.svg){#fig:case-spectrum width=70%}
dnl ![Floor response spectrum.](case-spectrum.svg){#fig:case-spectrum width=70%}

To recapitulate, the figures in this section show some partial non-dimensional results of an actual system of a certain nuclear power plant. The main issues to study were the interfaces between a carbon-steel pipe and a stainless-steel orifice plate used to measure the (heavy) water flow through the line. The steps discussed so far include

@@ -955,9 +956,9 @@ To recapitulate, the figures in this section show some partial non-dimensional r
4. computing a heat conduction (bake) transient problem with temperatures as a function of time from the operational transient in a simple domain using temperature-dependent thermal conduction coefficients from ASME\ II\ part D ([@fig:case-temp] or [@fig:valve-temp])
5. generalising the temperature distribution as a function of time to the general domain ([@fig:case-temp2] or [@fig:real])
6. performing a modal analysis (shake) on the main domain to obtain the main oscillation frequencies and modes ([@fig:case-mode] or [@fig:modes])
7. using the floor response spectra ([@fig:case-spectrum] or [@fig:spectrum]) and the SRSS method to obtain a distributed force statically-equivalent to the earthquake load ([@fig:case-acceleration] or [@fig:acceleration])
7. using the floor response spectra ([@fig:spectrum]) and the SRSS method to obtain a distributed force statically-equivalent to the earthquake load ([@fig:case-acceleration] or [@fig:acceleration])
8. successively solving the linear elastic problem for different times using the generalised temperature distribution taking into account
a. the dependence of the Young Modulus\ $E$ and the thermal expansion coefficient\ $\alpha$ with temperature,
a. the dependence of the Young’s Modulus\ $E$ and the thermal expansion coefficient\ $\alpha$ with temperature,
b. the thermal expansion effect itself
c. the instantaneous pressure exerted in the internal faces of the pipes at the time\ $t$ according to the definition of the operational transient
d. the restriction of the degrees of freedom of those faces, lines or points that correspond to mechanical supports located both within and at the ends of the CAD model
@@ -973,7 +974,7 @@ A pretty nice list of steps, which definitely I would not have been able to tack
![$a_y$](case-ay.png){width=33%}
![$a_z$](case-az.png){width=33%}

The static equivalent accelerations for the spectra of\ [@fig:case-spectrum] computed using the SRSS method
The static equivalent accelerations computed using the SRSS method
:::::

## Cumulative usage factors {#sec:usage}
@@ -992,24 +993,26 @@ We already said in\ [@sec:fatigue] that the stress-life fatigue assessment metho

$$U_j = \frac{n_j}{N_j}$$

The overall cumulative usage factor is then the algebraic sum of the partial contributions, a.k.a. Miner’s rule (or Palmgren-Miner rule) as learned in college:
The overall cumulative usage factor is then the algebraic sum of the partial contributions, a.k.a. [Miner’s rule](https://en.wikipedia.org/wiki/Fatigue_%28material%29%23Miner%27s_rule) as learned in college:

$$\text{CUF} = U_1 + U_2 + \dots + U_j + \dots$$

When\ $\text{CUF} < 1$, then the part under analysis can withstand the proposed cyclic operation.

![A low-alloy steel vessel nozzle (blue) welded to a stainless steel pipe (grey) for the “EAF Sample Problem 2-Rev.\ 2 (10/21/2011)”](axi-inches-3d.png){#fig:axi-inches-3d width=60%}
When\ $\text{CUF} < 1$, then the part under analysis can withstand the proposed cyclic operation. Now, if the extrema of the partial stress amplitude correspond to different transients, then the following note in ASME III’s NB-3224(5) should be followed:

Now, if the extrema of the partial stress amplitude correspond to different transients, then the following note in ASME III’s NB-3224(5) should be followed:

> In determining $n_1$, $n_2$, $n_3$, $\dots$, $n_j$ consideration shall be given to the superposition of cycles of various origins which produce a total stress difference range greater than the stress difference ranges of the individual cycles. For example, if one type of stress cycle produces 1,000 cycles of a stress difference variation from zero to +60,000\ psi and another type of stress cycle produces 10,000 cycles of a stress difference variation from zero to −50,000\ psi, the two types of cycle to be considered are defined by the following parameters:
>
> (a) for type 1 cycle, $n_1 =$ 1,000 and $S_{\text{alt},1} = (60,000 + 50,000)/2;
> (b) for type 2 cycle, $n_2 =$ 9,000 and $S_{\text{alt},2} = (50,000 + 0)/2.
> (a) for type 1 cycle, $n_1 =$ 1,000 and $S_{\text{alt},1} = (60,000 + 50,000)/2$;
> (b) for type 2 cycle, $n_2 =$ 9,000 and $S_{\text{alt},2} = (50,000 + 0)/2$.


This cryptic paragraph can be better explained by using a clearer example. To avoid using actual sensitive data from a real power plant, let us use the same test case used by both the [US Nuclear Regulatory Commission](https://en.wikipedia.org/wiki/Nuclear_Regulatory_Commission) (in its report NUREG/CR-6909) and the [Electric Power Institute](https://en.wikipedia.org/wiki/Electric_Power_Research_Institute) (report 1025823) called “EAF (Environmentally-Assisted Fatigue) Sample Problem 2-Rev.\ 2 (10/21/2011)”.

It consists of a typical vessel (NB-3200) nozzle with attached piping (NB-3600) as illustrated in\ [@fig:axi-inches-3d]. These components are subject to four transients\ $k=1,2,3,4$ that give rise to linearised stress histories (slightly modified according to NB-3216.2) which are given as individual stress values juxtaposed so as to span a time range of about 36,000 seconds ([@fig:nureg1]). As the time steps is not constant, each stress value has an integer index\ $i$ that uniquely identifies it:

![A low-alloy steel vessel nozzle (blue) welded to a stainless steel pipe (grey)](axi-inches-3d.png){#fig:axi-inches-3d width=25%}


It consists of a typical vessel nozzle with attached piping as illustrated in\ [@fig:axi-inches-3d]. These components are subject to four transients\ $k=1,2,3,4$ that give rise to linearised stress histories (slightly modified according to NB-3216.2) which are given as individual stress values juxtaposed so as to span a time range of about 36,000 seconds ([@fig:nureg1]). As the time steps is not constant, each stress value has an integer index\ $i$ that uniquely identifies it:

| $k$ | Time range [s] | Index range | Cycles\ $n_k$ |
|:-----:|:--------------:|:-----------:|:----------------:|
@@ -1018,7 +1021,8 @@ It consists of a typical vessel (NB-3200) nozzle with attached piping (NB-3600)
| 3 | 6450--9970 | 960--1595 | 20 |
| 4 | 9970--35971 | 1596--2215 | 100 |

A design-basis earthquake was assumed to occur briefly during one second (sic) at around\ $t=3470$\ seconds, and it is assigned a number of cycles\ $n_e=5$. The detailed stress history for one of the SCLs including both the principal and lineariased stresses, which are already offset following NB-3216.2 so as to have a maximum stress equal to zero, can be found as an appendix in NRC's NUREG/CR-6909 report, or in the repository with the scripts I prepared for you to play with this problem.^[<https://bitbucket.org/seamplex/cufen>]
A design-basis earthquake was assumed to occur briefly during one second (sic) at around\ $t=3470$\ seconds, and it is assigned a number of cycles\ $n_e=5$. The detailed stress history for one of the SCLs including both the principal and lineariased stresses, which are already offset following NB-3216.2 so as to have a maximum stress equal to zero, can be found as an appendix in NRC's NUREG/CR-6909 report, or in the repository with the scripts I prepared for you to play with this problem.^[<https://github.com/seamplex/cufen>]


::::: {#fig:nureg}
![Full time range of the juxtaposed transients spanning $\approx$ 36,000 seconds](nureg1.svg){#fig:nureg1 width=70%}
@@ -1030,18 +1034,13 @@ A design-basis earthquake was assumed to occur briefly during one second (sic) a
Time history of the linearised stress\ $\text{MB}_{31}$ corresponding to the example problem from NRC and EPRI. The indexes\ $i$ of the extrema are shown in green (minimums) and red (maximums)
:::::

\medskip

To compute the global usage factor, we first need to find all the combinations of local extrema pairs and then sort them in decreasing order of stress difference. For example, the largest stress amplitude is found between $i=447$ and $i=694$. The second one is 447--699. Then 699--1020, 699--899, etc. For each of these pairs, defined by the indexes\ $i_{1,j}$ and $i_{2,j}$, a partial usage factor\ $U_j$ should computed. The stress amplitude\ $S_{\text{alt},j}$ which should be used to enter into the $S$-$N$ curve is

$$
S_{\text{alt},j} = \frac{1}{2} \cdot k_{e,j} \cdot \left| MB^\prime_{i_{1,j}} - MB^\prime_{i_{2,j}} \right| \cdot \frac{E_\text{SN}}{E(T_{\text{max}_j})}
$$
where $k_e$ is a plastic correction factor for large loads (NB-3228.5), $E_\text{SN}$ is the Young Modulus used to create the $S$-$N$ curve (provided in the ASME fatigue curves) and\ $E(T_{\text{max}_j})$ is the material’s Young Modulus at the maximum temperature within the\ $j$-th interval.

\medskip

We now need to comply with ASME’s obscure note about the number of cycles to assign a proper value of\ $n_j$. Back to the largest pair 447-694, we see that 447 belongs to transient\ #1 which has assigned 20 cycles and 694 belongs to the earthquake with 5 cycles. Therefore\ $n_1=5$, and the cycles associated to each index are decreased in five. So $i=694$ disappears and the number of cycles associated to $i=447$ are decreased from 20 to 15. The second largest pair is now 447-699, with 15 (because we just spent 5 in the first pair) and 50 cycles respectively. Now $n_2=15$, point\ 447 disappears and 699 remains with 35 cycles. The next pair is 699-1020, with number of cycles 35 and 20 so $n_3=20$, point 1020 disappears and 699 remains with 15 cycles. And so on, down to the last pair.
where $k_e$ is a plastic correction factor for large loads (NB-3228.5), $E_\text{SN}$ is the Young’s Modulus used to create the $S$-$N$ curve (provided in the ASME fatigue curves) and\ $E(T_{\text{max}_j})$ is the material’s Young’s Modulus at the maximum temperature within the\ $j$-th interval.

::::: {#fig:cuf}
![Reference from NUREG/CR6909](cuf-nrc.png){#fig:cuf-nrc width=100%}
@@ -1051,11 +1050,13 @@ We now need to comply with ASME’s obscure note about the number of cycles to a
Tables of individual usage factors for the NRC/EPRI “EAF Sample Problem 2-Rev.\ 2 (10/21/2011).” One table is taken from a document issued by almost-a-billion-dollar-year-budget government agency from the most powerful country in the world and the other one is from a third-world engineering startup. Guess which is which.
:::::

We now need to comply with ASME’s obscure note about the number of cycles to assign a proper value of\ $n_j$. Back to the largest pair 447-694, we see that 447 belongs to transient\ #1 which has assigned 20 cycles and 694 belongs to the earthquake with 5 cycles. Therefore\ $n_1=5$, and the cycles associated to each index are decreased in five. So $i=694$ disappears and the number of cycles associated to $i=447$ are decreased from 20 to 15. The second largest pair is now 447-699, with 15 (because we just spent 5 in the first pair) and 50 cycles respectively. Now $n_2=15$, point\ 447 disappears and 699 remains with 35 cycles. The next pair is 699-1020, with number of cycles 35 and 20 so $n_3=20$, point 1020 disappears and 699 remains with 15 cycles. And so on, down to the last pair.

Why all these details? Not because I want to teach you how to perform fatigue evaluations just reading this section without resorting to ASME, fatigue books and even other colleagues. It is to show that even though these computation can be made “by hand” (i.e. using a calculator or, God forbids, a spreadsheet) when having to evaluate a few SCLs within several piping systems it is far (and I mean really far) better to automate all these steps by writing a set of scripts. Not only will the time needed to process the information be reduced, but also the introduction of human errors will be minimised and repeatability of results will be assured---especially if working under a [distributed version control](https://en.wikipedia.org/wiki/Distributed_version_control) system such as [Git](https://en.wikipedia.org/wiki/Git). This is true in general, so here is another tip: learn to write scripts to post-process your FEM results (you will need to use a script-friendly FEM program) and you will gain considerable margins regarding time and quality.

### In water (NRC’s extension) {#sec:in-water}

The fatigue curves and ASME’s (both\ III and VIII) methodology to analyse cyclic operations assume the parts under study are in contact with air, which is not the case of nuclear reactor pipes. Instead of building a brand new body of knowledge to replace ASME, the NRC decided to modify the former adding environmentally-assisted fatigue multipliers to the traditional usage factors, formally defined as
The fatigue curves and ASME’s (both\ III and\ VIII) methodology to analyse cyclic operations assume the parts under study are in contact with air, which is not the case of nuclear reactor pipes. Instead of building a brand new body of knowledge to replace ASME, the NRC decided to modify the former adding environmentally-assisted fatigue multipliers to the traditional usage factors, formally defined as

$$F_\text{en} = \frac{N_\text{air}}{N_\text{water}} \geq 1$$

@@ -1081,7 +1082,7 @@ The NRC has performed a comprehensive set of theoretical and experimental tests

Apparently it makes no difference whether the environment is composed of either light or heavy water. There are somewhat different sets of non-dimensional analytical expressions that estimate the value of\ $F_{\text{en}}(t)$ as a function of\ $O(t)$, $T(t)$, $\dot{\epsilon}(t)$ and $S(t)$, both in the few revisions of NUREG/CR-6909 and in EPRI’s report\ #1025823. Although they are not important now, the actual expressions should be defined and agreed with the plant owner and the regulator. The main result to take into account is that\ $F_{\text{en}}(t)=1$ if\ $\dot{\epsilon}(t)\leq0$, i.e. there are no environmental effects during the time intervals where the material is being compressed.

Once we have the instantaneous factor\ $F_{\text{en}}(t)$, we need to obtain an average value\ $F_{\text{en},j}$ which should be applied to the\ $j$-th load pair. Again, there are a few different ways of lumping the time-dependent\ $F_{\text{en}}(t)$ into a single $F_{\text{en},j}$ for each interval. Both NRC and EPRI give simple equations that depend on a particular time discretisation of the stress histories that, in my view, are all ill-defined. My guess is that they underestimated they audience and feared readers would not understand the slightly-more complex mathematics needed to correctly define the problem. The result is that they introduced a lot of ambiguities (and even technical errors) just not to offend the maths illiterate. A decision I do not share, and a another reason to keep on learning and practising math.
Once we have the instantaneous factor\ $F_{\text{en}}(t)$, we need to obtain an average value\ $F_{\text{en},j}$ which should be applied to the\ $j$-th load pair. Again, there are a few different ways of lumping the time-dependent\ $F_{\text{en}}(t)$ into a single $F_{\text{en},j}$ for each interval. Both NRC and EPRI give simple equations that depend on a particular time discretisation of the stress histories that, in my view, are all ill-defined. My guess is that they underestimated their audience and feared readers would not understand the slightly-more complex mathematics needed to correctly define the problem. The result is that they introduced a lot of ambiguities (and even technical errors) just not to offend the maths illiterate. A decision I do not share, and a another reason to keep on learning and practising math.

When faced for the first time with the case study, I have come up with a weighting method that I claim is less ill-defined (it still is for border-line cases) and which the plant owner accepted as valid. [@Fig:cufen] shows the reference results of the problem (based on computing two correction factors and then taking the maximum) and the ones obtained with the proposed method (by computing a weighted integral between the valley and the peak). Note how in\ [@fig:cufen-nrc], pairs 694-447 and 699-447 have the same\ $F_\text{en}$ even though they are (marginally) different. The results from\ [@fig:cufen-seamplex] give two (marginally) different correction factors.

@@ -1100,25 +1101,25 @@ Back in college, we all learned how to solve engineering problems. And once we g
* use and exercise your imagination
* practise math
* start with simple cases first
dnl * grasp the dependence of results with independent variables
* keep in mind there are other methods beside finite elements
* grasp the dependence of results with independent variables
* remember there are other methods beside finite elements
* take into account that even within the finite element method, there is a wide variety of complexity in the problems that can be solved
dnl * follow the “five whys rule” before compute anything, probably you do not need to
* use engineering judgment and make sure understand Asimov’s [“wronger than wrong”](https://en.wikipedia.org/wiki/Wronger_than_wrong) concept
* play with your favourite FEM solver (mine is [CAEplex](https://caeplex.com)) solving simple cases, trying to predict the results and picturing the stress tensor and its eigenvectors in your imagination
* prove (with pencil and paper) that even though the principal stresses are not linear with respect to summation, they are linear with respect to multiplication
* grab any stress distribution from any of your FEM projects, compute the iso-stress curves and the draw normal lines to them to get acquainted with SCLs
dnl * first search online for “stress linearisation” (or “linearization” if you want) and then get a copy of ASME\ VIII Div\ 2 Annex 5-A
* keep in mind that FEM solutions lead only to nodal equilibrium but not pointwise equilibrium
* search online for “stress linearisation” (or “linearization” if you want) and then get a copy of ASME\ VIII Div\ 2 Annex 5-A
* take into account that FEM solutions lead only to nodal equilibrium but not point-wise equilibrium
* measure the time needed to generate grids of different sizes and kinds with your favourite mesher
* learn this by heart: the complexity of a FEM problem is given mainly by the number of _nodes_, not by the number of elements
* remember that welded materials with different thermal expansion coefficients may lead to fatigue under cyclic temperature changes
dnl * if you have time, try to get out of your comfort zone and do more than what others expect from you (like parametric computations)
dnl * clone the [parametric tee repository](https://bitbucket.org/seamplex/tee), understand how the figures from\ [@sec:parametric] were built and expand them to cover “we might go on...” bullets
dnl * try to find an explanation of the results obtained, just like we did when we explained the parametric curves from\ [@fig:tee-MB ] with two opposing effects which were equal in magnitude around $d_b=5$\ inches
* clone the [parametric tee repository](https://github.com/seamplex/tee), understand how the figures from\ [@sec:parametric] were built and expand them to cover “we might go on...” bullets
* try to find an explanation of the results obtained, just like we did when we explained the parametric curves from\ [@fig:tee-MB ] with two opposing effects which were equal in magnitude around $d_b=5$\ inches
* think thermal-mechanical plus earthquakes as “bake, break and shake” problems
* understand why the elastic problem of the case study is still linear after all
* keep in mind that finite-elements are a mean to get an engineering solution, not an end by themselves
* keep in mind that finite-elements are a means to get an engineering solution, not an end by themselves
* learn to write scripts to post-process FEM results (from a script-friendly FEM program)
* work under a [distributed version control](https://en.wikipedia.org/wiki/Distributed_version_control) system such as [Git](https://en.wikipedia.org/wiki/Git), even when just editing input files or writing reports
dnl * clone the [environmental fatigue sample problem repository](https://bitbucket.org/seamplex/cufen) and obtain a nicely-formatted table with the results of the “EAF Sample Problem 2-Rev.\ 2 (10/21/2011)” from\ [@sec:in-air;@sec:in-water].

Loading…
Annulla
Salva